本发明公开了一种液态全浸式锂电池的热管理实验方法,包括如下步骤:步骤一,设置一个上方开口的试验箱、信息分析控制电脑、温度检测装置和温度控制装置;步骤二,将温度检测装置分成液体温度检测装置和电池温度检测装置;步骤三,通过在试验箱的底部设置针刺或将锂电池外接短路电路触发锂电池热失控;步骤四,信息分析电脑便接收采集液体温度检测装置和电池温度检测装置输出的环境温度和锂电池温度。本发明的液态全浸式锂电池的热管理实验方法,通过步骤一至步骤四的设置,便可有效的对锂电池的热管理进行实验了。
本发明提出一种铝空气电池系统,包括:电池组、工作液箱、洗液箱、电解液箱、废液箱、第一和第二三通阀、盘管、加热棒、热交换器、散热器、通风风扇、散热风扇和第一至第六电子泵,其中,电池组、工作液箱、洗液箱、电解液箱、废液箱、第一和第二三通阀、第一电子泵、第二电子泵、第三电子泵及第五电子泵通过管道连接构成液流循环子系统,电池组、电解液箱、工作液箱、加热棒、盘管、热交换器、通风风扇、散热风扇、散热器、第一电子泵、第四电子泵及第六电子泵通过管道连接构成热管理子系统。本发明能实现对铝空气电池的合理液流循环和散热循环,提高了铝空气电池的稳定性、安全性及使用寿命。
本发明属于动力电池领域,具体涉及一种动力电池温度预测系统及方法。本发明的动力电池温度预测系统,包括采集模块和温度预测模块,通过充放电过程中锂离子嵌脱反应的通量、电池容量衰减量以及低温加热充电的时间等多目标函数确定关键温度参数进行温度预测。本发明的方法提高了电池温度预测精度,降低温度对电池性能的不利影响。
本发明提供了一种动力电池包热管理系统,涉及新能源汽车领域。热管理系统包括:在托盘内限定了第一通道,第一热交换管道与第一通道制成为一体;和在支架内限定了第二通道,第二热交换管道与第二通道制成为一体;其中,托盘和支架之间限定了一容纳空间,第一电池模组设置在该容纳空间;托盘与支架紧固连接,第一热交换管道与第二热交换管道在所述托盘与所述支架的连接处密封连通。由于将散热通道限定在了托盘和支架内部,因此托盘和支架既作为支撑结构又作为散热结构,提高了电池包空间的利用率,对系统结构进行了有效减重。而且第一热交换管道与第二热交换管道连接,这延伸了热交换通道的长度,有利于有效控制多组电池模组的温度。
本发明实施例提供一种储能电池系统及其电池热管理系统,该储能电池系统包括:箱体、空调系统和若干列储能电池柜,每列储能电池柜的预设位置处均设有空调系统的空调室内机,每列储能电池柜对应一个主风道;各列储能电池柜、空调室内机和各个主风道设置在箱体内,每列储能电池柜均包括若干个储能电池柜,每个储能电池柜内均安装有若干个电池插箱,每个电池插箱内均安装有电池芯组件;每个储能电池柜均具有连通风道,每个空调室内机吹出的空气经过相应主风道的进风口和排风口输送到相应储能电池柜的连通风道,再通过连通风道送入电池插箱内部。本实施例提供的系统能够实现均匀送风,对电池芯体散热效果好,提高散热效率。
本发明属于液体燃料电池领域。本发明涉及一种液体燃料电池系统低温快速启动方法,其特征是采用甲醇、乙醇等有机小分子物质为燃料,在催化燃烧器中进行催化燃烧,燃烧产生的热直接或间接通过电堆加热室为电堆加热,和 或为系统内水热管理部件加热,从而实现液体燃料电池系统低温快速启动。与现有技术相比,本发明有利于液体燃料电池系统在低温下启动,提高液体燃料电池的低温环境适应性,拓展了其应用范围。
本发明公开了一种电子设备热管理微结构,包括上层PCB和下层PCB,上层PCB与下层PCB叠放键合;上层PCB布设有蒸发室、冷却室以及用于气态冷却工质传输的微型流道Ⅰ,微型流道Ⅰ连通上层PCB蒸发室与冷却室;下层PCB布设蒸发室、冷却室、用于液态冷却工质传输的微型流道II以及为液态冷却工质提供驱动力的微型泵,微型流道II连通下层PCB蒸发室与冷却室,微型流道II的入口和出口分别与微型泵连接;上层PCB蒸发室与下层PCB蒸发室之间通过纳米多孔蒸发薄膜隔开,上层PCB冷却室与下层PCB冷却室之间通过半透薄膜隔开;上层PCB冷却室和下层PCB蒸发室均布设有贯通PCB的金属柱体阵列。本发明解决了现有电子设备散热技术中遇到的问题,改善了电子设备的性能和稳定性。
本发明公开了一种动力电池包可变流道主动热管理控制方法及系统,包括温度传感器、相变储能导热板、电池管理系统、换向阀、水泵、水箱、散热器、蓄电池、循环水管;平面热管放置在电池单体两两之间紧密贴合,平面热管嵌在相变储能导热板中,相变储能导热板伸入到循环水管中,循环水管中的冷却液通过进 出水管与外界散热器相连;温度传感器贴在动力电池包上,温度传感器与电池管理系统通过温度传感器信号线束相连;电池管理系统根据温度传感器传来的信息,通过PID算法控制水泵、散热器以及换向阀,进而调整循环水道中的冷却液流向以及流速,用以控制动力电池包的整体温升,增加动力电池包温度一致性。
本发明公开了一种电池包的热管理系统,包括:多个换热板、多个支撑板、多个集流管和管接头。所述换热板内设有纵向贯通的换热腔;多个所述换热板与多个所述支撑板沿水平方向交错设置;所述集流管设置在所述换热板的端部且与所述换热腔连通;所述管接头连接在相邻的两个所述集流管之间,且所述管接头横跨所述支撑板。该热管理系统的整体结构更紧凑,整体重量较轻,且整体换热效果更好。
本发明公开了一种基于平面热管、液冷、相变储能导热板耦合的动力电池包多级散热系统及控制方法,包括电气系统、冷却系统,电气系统包括电池模组、温度传感器、电池管理系统、电源线束、蓄电池、多级散热制冷器控制线;冷却系统包括多级散热制冷器、相变储能导热板、平面热管、循环水管、散热器、水箱、水泵、冷却液。温度传感器用于采集电池模组温度,和电池管理系统相连;水泵、多个多级散热制冷器、散热器与蓄电池相连,并且由蓄电池提供能量;水泵、多个多级散热制冷器、散热器分别通过水泵控制线束、多级散热制冷器控制线束以及散热器控制线束与电池管理系统相连,并且受电池管理系统的实时控制,以控制动力电池包的整体温升。
本发明公开了一种用于检测空调热负荷及制冷剂流量的检测方法,包括:获取空调的进风口焓值和出风口焓值;根据进风口焓值和出风口焓值获得第一焓差;获取鼓风机风量;根据第一焓差和鼓风机风量获得空调热负荷;获取冷凝器出液口处的焓值和蒸发器出气口处的焓值;根据冷凝器出液口处的焓值和蒸发器出气口处的焓值获得第二焓差;根据质量流量公式计算获得制冷剂流量。本发明提供的用于检测空调热负荷及制冷剂流量的检测方法,利用焓差和鼓风量实现了对空调热负荷的计算,同时,根据焓差和热负荷,实现了对制冷剂流量的计算,根据反馈的热负荷信号和制冷剂流量信号,有效提升了空调系统及整车热管理系统的性能管理。
本发明公开了一种新能源汽车电池热管理装置,包括安装电池的底座、下端开口的防护箱、第一进气管道、第二进气管道和第三进气管道;所述底座由扁平状的下端开口的盒体和连接在盒体下端的底板组成,所述盒体的上端面上位于凹槽的外侧遍布有透气孔;所述第一进气管道的一端与盒体的空腔相连通,另一端设置有集气罩,所述第一进气管道上设置有阀门,所述集气罩的大口端朝向汽车的前方;所述第二进气管道的一端与盒体的空腔相连通,另一端与风机的出风口相连,所述第三进气管道的一端与盒体的空腔相连通,另一端与汽车空调的出风管相连通;本发明可有效的对电池进行热管理,使电池工作在合适的温度范围内,保证电池拥有正常的工作性能和使用寿命。