本实用新型涉及一种柱状电池成组高导热液体换热装置,属于电动汽车、动力电池热管理领域,特别涉及动力电池组温度均衡性和轻量化提升的增效控制装置。该装置的高导热石墨套套装在柱状电池外表面,并通过背胶紧密粘附,达到柱状电池良好的温均性,所述柱状电池成组通过高导热石墨带围绕粘附串接形成一列,高导热石墨带两端与两侧的传热板表面粘接,传热板内设有导流片,成组柱状电池通过高导热石墨带和传热板内液流实现热量导入、导出传递,达到电池组热管理冷暖温度控制。从而进一步提升电池包轻量化和安全性,电池套装高导热石墨套保证各电池温均性;外部两端传热板采用逆流设置和槽道导流形成多腔室流动,提高了换热能力,降低了传热温差。
本发明涉及微电子封装与热管理计算领域,公开了一种TSV转接板等效热导率预测方法及系统,为解决3D集成封装芯片热管理问题提供基础支持。该方法包括:构建考虑有介电层的TSV转接板垂直方向上的二维等效模型;根据组分在模型中的体积占比不变的原则,分别计算TSV孔中填充物及介电层在垂直方向二维等效模型中的等效参数;根据所述二维等效模型中的等效参数及硅、介电层及填充物的热导率仿真得出与垂直方向热流相垂直的两平行截面之间的平均温度差;根据所述平均温度差、两平行截面的距离及热流参数计算得出TSV转接板垂直方向的等效热导率。
本实用新型公开了一种电动汽车电池调控装置,包括与车载空调管路连通且用于为电动汽车电池输送调温气体的管网、车载控制终端和云计算处理平台,管网包括多个出风管,每个出风管上均安装有比例电磁阀,电动汽车电池包括多个依次串联的电池组,车载控制终端包括主控制器、供电电源、移动收发器和车载电脑,主控制器的输入端接有电流传感器和用于控制电池组充放电均衡的从控制单元,主控制器的输出端接有显示器和继电器;车载电脑的输出端接有车载空调控制模块和报警器。本实用新型设计新颖,利用电动汽车自身空调系统改造实现单体电池热管理,利用均衡电路调整控制个单体电池之间的电压平衡,保障电动汽车电池处于最佳的工作状态。
本发明公开了一种相变材料的散热性能的检测装置,包括隔热板、薄片加热膜、相变材料立方体模块和热电偶,使隔热板和相变材料立方体模块对薄片加热膜形成包裹结构,通过热电偶检测相变材料立方体模块的温度。本发明还公开了一种石墨烯 石蜡复合材料的散热性能检测的方法,采用本发明相变材料的散热性能的检测装置,将有石墨烯 石蜡样品的一侧朝上,连接电路向加热膜施加恒定热功率,并每隔一定时间检测并记录热电偶的温度变化,通过统计分析数据,分析石墨烯 石蜡复合材料在给定功率下的温度变化曲线。本发明能够较为方便、准确地测试出不同比例的石墨烯 石蜡复合材料散热效果,能系列地对比分析不同比例的石墨烯 石蜡复合材料的散热性能。
本实用新型公开了一种电动汽车用电池热管理系统,包括电池底座、与电池底座可拆卸连接的电池外壳、用于给电动汽车提供电能的电池装置和用于对电池装置进行热管理的电池热管理装置,所述电池装置包括设置在电池底座一侧的储液箱以及设置在电池底座上的电池组和泵,电池组包括多个电池,每个电池的一侧均设置有安装在电池底座上的隔热挡板,每个电池的另一侧均固定连接有用于散热的导热环流管,电池和导热环流管上均设置有热电偶,储液箱内装有加热液或冷却液。本实用新型结构简单、设计合理,可将电动汽车的电池工作温度控制在合理的范围内,安全可靠,功耗较低,提高了温度控制精度,使用操作方便,实用性强,使用效果好,便于推广使用。
一种燃料电池车辆的热管理系统包括:冷起动回路,该冷启动回路在燃料电池的冷起动过程中加热流动通过燃料电池的冷却剂;以及冷却回路,该冷却回路移动冷却燃料电池的冷却剂。
本发明公开了一种基于相变热管理的光伏光热集热器。本发明包括在常规水冷型光伏光电集热器的基础上引入相变材料,通过合理设计结构,增加相变层以协助液体流质型换热组件提高换热量,进而更为有效地降低光伏背板的温度,提高太阳能电池的发电效率,从而克服现有光伏光热集热器换热能力不足或增加的辅助换热装置存在缺陷;并且本发明集热器的三种工作模式能够满足实际应用中不同使用阶段、不同使用需求的换热负荷要求,进而提高太阳能的综合利用效率;此外,在低温下相变材料能够将储存的热量释放为集热器提供低温保护。
本发明公开了一种结合热管冷却和热防护的热管理系统,包括电池单体(1),各电池单体(1)设置在绝热层(13)下方,绝热层(13)上方为冷却层(12);每两个电池单体(1)组成一个电池对单元(14),每个电池对单元(14)的两个电池单体(1)之间均匀设有热管(3),热管(3)一端穿过绝热层(13)延伸至冷却层(12),另一端延伸至所述电池单体(1)的底部,用于传导电池充放电过程中产生的热量;每个电池对单元(14)的两侧设有热隔离层(11),用于对热失控的电池单体(11)进行热隔离。本发明的系统,通过热管冷却和热隔离层结合的方式综合考虑了电池热管理以及电池热管理失控后的应急措施,比普通的单纯热管理系统更具安全性。
一种基于复合相变材料散热的动力电池热管理系统,包括管壳式电池模块、温度传感器、电子控制单元、通风管道、空调;空调出风口通过通风管道与电池模块进风口相连,温度传感器贴在位于电池模块中心位置的电池表面,温度传感器通过信号线与电子控制单元相连,电子控制单元再通过信号线与空调的控制电路相连。在极端环境温度下,启动空调制冷加快相变材料的散热;电池快速充电时,利用电网电能启动空调制冷,让相变材料的温度在较短的时间内恢复到初始温度。本发明能确保电池在安全温度范围内运行和各电池单体具有好的温度一致性,并克服了传统的相变材料热管理的缺点:相变材料融化后的散热效率低、循环使用容易引起热失控。
本发明实施例公开了一种气液冷却一体化散热装置及热管理系统,其中,该气液冷却一体化散热装置包括:动力电池散热器箱体、进气箱体、多孔通气管道、出气通道、进气口、进水通道和排水通道;所述进气箱体通过所述多孔通气管道与所述动力电池散热器箱体连接;所述进气箱体设置有所述出气通道、进气口;所述动力电池散热器箱体设置有所述进水通道和所述排水通道。对比传统液冷方式,本发明实施例提供的气液冷却一体化散热装置通过进气箱体使得气体从多孔通气管道进入传热介质中,产生大量气泡,与动力电池组进行高热流密度换热,将冷凝器和蒸发器合为一体,其结构简单,维修方便。对比风冷,其散热效果更佳,散热效果类似液冷。
一种方法包括:针对多个电池单元中的给定电池单元估计内阻;针对给定电池单元估计开路电压;确定给定电池单元的目标输出电压;确定给定电池单元的目标放电电流;基于所估计出的给定电池单元的开路电压、给定电池单元的目标输出电压和给定电池单元的目标放电电流来确定给定电池单元的目标内阻;基于给定电池单元的目标内阻来确定给定电池单元的目标单元温度;以及基于给定电池单元的目标温度来控制与给定电池单元相邻的冷却剂流。
内阻直接反映燃料电池电堆内部真实的水热管理状况,本发明基于内阻检测,提出了一种温度优化及控制方法,先通过对燃料电池内部机理分析,建立燃料电池内阻模型、温度模型,再对模型进行仿真,以仿真结论为指导进行实验,通过实验得到的数据对模型参数进行优化,使模型根据符合燃料电池实际的工作状态。之后进行控制,以优化后的模型为控制基础,先通过EIS法测出电堆当前电流下总内阻与段内阻值,代入内阻模型计算出电堆内部温度大小,再将当前温度值与最优值对比,将差值代入温度模型计算出控制变量调节大小,通过对控制效果图分析,该方法可以很好地将堆内温度控制在最优值附近,并明显提高控制的实时性和稳定性,方法是有效、可行的。