本发明涉及一种基于相变材料的电动汽车集成式热管理系统。包括电池集成热管理机构、变速箱集成热管理机构、电机集成热管理机构、热泵空调机构和相变材料换热机构。当外界环境在0 30℃正常工作温度范围,电动汽车的电池组工作时,产生的热量储存于低温相变材料换热器中,0 零下10℃条件下,低温相变材料换热器将存储的热量用于加热电动汽车的电池组;变速箱工作时产生的热量储存于高温相变材料换热器中;电机和电路模块工作时产生的热量储存于高温相变材料换热器中;0 零下10℃条件下,高温相变材料换热器将存储的热量通过相变材料换热机构内的冷却液传递给低温相变材料换热器用于加热电动汽车的电池组。
液体冷却 加热和翅片传热复合的形电池成组方法涉及电池的热管理领域。针对圆柱形电池设计了一种符合国内电动汽车液体冷却 加热和翅片传热的复合成组方法。本方法将翅片按照电池排列方式和冷却管布置方式开孔。通过翅片上的安装孔在电池和换热管上布置一定数量的翅片,冷却电池时可以在翅片的间隙填充一定量相变材料。本方法通过翅片增大了换热面积利用管内的液体对电池进行冷却或加热。该方法易于根据热管理设计需求调整翅片的数量和间距以及相变材料的用量,增加了电池与换热管间的换热面积,从而增强液体与电池的换热效果,提高了电池温度的均匀性,延长电池系统的寿命。液体与电池通过翅片实现间接式换热,能够提高电池系统的安全性。
本发明公开了一种车用燃料电池水热管理系统及其控制方法,车用燃料电池水热管理系统包括并联在燃料电池上的小循环加热系统,大循环冷却系统、湿度调节系统以及控制系统,燃料电池上分别设有进气管路和排气管路,进气管路上分别设有氢气泵和空气泵,控制系统包括ECU,各温度传感器和各湿度传感器的信号线分别并联在ECU的信号输入端,水泵、三通阀、比例阀、加热器和风扇的电控线分别并联在ECU的信号输出端。本发明,可根据燃料电池不同工况进行加热和加湿的水热管理系统,利用尾气中的热量和水分,通过热交换器对冷却液进行加热,并通过比例阀将尾气中的部分水蒸气引回到阴极对空气进行加湿。
本实用新型公开了一种具有热疏导及定向热聚集功能的热管理器件,包括圆柱体基体、热源和热聚集部件,所述热源为设置在所述圆柱体基体中心且与所述圆柱体基体等高的柱状体结构,所述热聚集部件为多个设置在所述圆柱体基体内且围绕所述热源周向布置的扇形结构,所述热聚集部件与所述圆柱体基体高度相同,所述热聚集部件短弧面一侧远离所述热源,所述热聚集部件由两种热导率不同的材料沿扇形结构的圆弧方向交错排布构成。本实用新型的热管理器件改变了现有热超构材料只能实现非线性热流单一调控的功能,实现了热疏导和定向热聚集的耦合,将高温热源区域的热流进行分布式疏导、定向聚集到低温区域,具有非常显著的应用优势。
本实用新型公开了一种热管和相变材料耦合的电池模组热管理装置,包括均热底板、内部用于行列式均匀设置电池的箱体,所述均热底板的下表面贴合地设置有换热装置,所述箱体内的各个电池之间、各个电池与箱体内壁之间的间隙中填充设置有相变材料,相邻电池之间的相变材料内还均匀嵌设有若干热管,所述热管伸出所述相变材料的一端与所述均热底板的上表面传热接触。本实用新型可根据实际工况选择对电池模组进行散热或加热,且均温性高,安全性好。当单个或若干个电池出现热失控时,该装置可迅速吸收其瞬间产生的大量热量,整个电池模组迅速均温并将热量传递至外部,避免其周边的电池也发生热失控。布局设计难度低,结构简单且制造成本较低。
本发明涉及一种电池冷却行为优先级判断的控制方法,包括以下步骤:稳定状态下,分别摄动触发式改变散热器风扇转速与水泵流量,比较热管理影响效果择优作为主要冷却动作行为。本发明电池冷却行为优先级判断的控制方法可在热管理过程中,判断目前电池冷却行为热况属于水流量较小带来的热量不足,或是因风扇转速所致散热量不足,或因制冷剂流量导致换热量小。进一步针对性采取冷却行为,强化热控效果并增效节能。
本实用新型公开了一种插电式混合动力车热管理系统,属于混合动力车技术领域。一种插电式混合动力车热管理系统,包括主冷循环路径,该主冷循环路径通过主散热器对发动机、变速箱进行散热,其特征在于,所述系统还包括:暖风制热循环路径,由发动机冷循环支路出口、电制热器、暖风换热器、循环泵一、双通阀一、发动机冷循环支路入口连通构成,所述暖风制热循环路径至少包括发动机工作时的发动机冷循环生热制热工作模式和发动机不工作时的电制热器制热工作模式,既能够满足整车的暖风要求,又充分利用了发动机散热产生的废热,使得整车内的能源得到合理循环和利用,从而达到了节约能源的效果。
本发明公开了一种燃料电池余热驱动的电动汽车动力蓄电池热管理系统,包括蒸汽发生装置、第一气体喷射器、第二气体喷射器、回热器、车外换热器、预冷器、节流阀、车内换热器及动力蓄电池换热板,该系统能够利用燃料电池的余热进行制冷或制热,有效解决不同环境温度下电动汽车动力电池的热管理问题。
本发明提供一种石墨烯修饰界面的高导热金属基复合材料及其制备方法。所述的石墨烯修饰界面的高导热金属基复合材料包括金刚石、石墨烯修饰的金属粉体。所述的制备方法包括:将金属粉体进行退火还原,去除表面的氧化物;对退火还原的金属粉体包覆固体碳源或气体碳源,在氢气气氛保护下高温原位生长得到石墨烯包覆的金属粉体;将石墨烯包覆修饰的金属粉体与金刚石混合,通过热压烧结,制备石墨烯修饰界面的高导热金属基复合材料。本发明有效地改善了金属基体与金刚石颗粒的界面润湿性,降低界面热阻,高导热石墨烯的引入,提高复合材料的热导率,可用作高功率密度器件的热管理材料。
本申请公开了一种电池组热管理装置,包括电池箱上盖、电池箱下体、密封垫圈、电池、传热隔板、换热管、冷板和托盘。所述换热管嵌入在安装于电池箱表面的冷板内。所述电池位于电池箱体内部并与传热隔板有序间隔地排列。所述电池箱上盖、密封垫圈和电池箱下体配合安装,构成容纳电池和传热隔板的密闭容器,其中密封垫圈起密封防水作用。所述托盘安装于整个装置的最底部,起承载电池组的作用。本实用新型采用换热管嵌入在冷板内的方式即避免了液冷方式容易漏液的缺点,也避免了换热管直接作用于被冷却对象为线接触而导致散热效果不理想的缺点。此外,采用回形的布管方式,经大量的实验和仿真对比分析发现此布管方式使电池组整体温度分布较均匀。
本申请提出一种燃料电池电堆热管理装置和系统,所述装置包括:管道机构贯穿燃料电池堆并与水箱、散热器、水泵相连接,用于将从燃料电池堆的冷却液出口排出的冷却液进行循环冷却后再传输至燃料电池堆的冷却液入口;控制机构与数据采集装置相连接,用于根据数据采集装置采集的温度信号确定冷却液的温度,根据温度信号控制针阀的开度使得冷却液的温度在预设温度范围内;针阀机构设置于水泵与散热器之间的通路上,用于根据控制机构的信号控制通过散热器的冷却液的流量。管道机构包括排气管道,排气管道分别设置于燃料电池堆的冷却液入口与水箱的通路上和去离子罐与水箱的通路上,用于将管道机构中冷却液中的气泡传输至水箱。
本发明公开一种大功率锂离子电池热管理系统,包括由多个锂电池单体构成的锂电池模组、若干热管散热单体、模组箱体、相变冷却液、温度液位采集器等。本发明通过将电池单体浸没于相变冷却液,并结合热管散热单体快速带走箱体内部热量。使车载储能系统在高温环境下能工作在适宜的温度范围之内,能够有效提高电池单体的温度一致性,能够有效提高轨道车辆储能系统高温下的安全可靠性,并且能够提高经济指标低、体积质量指标低和环保指标。