本发明公开了一种具有废热利用的热泵集成式燃料电池汽车热管理系统,包括热泵循环回路,电机循环回路,燃料电池循环回路,电池包循环回路;热泵循环回路通过多个板式换热器与其他循环回路相连组成集成式热管理系统,通过第一板式换热器与燃料电池循环回路相连,通过第二板式换热器与电机循环回路相连,通过第三板式换热器与电池包循环回路相连;通过热泵集成式热管理系统,热泵循环可利用环境或其他热源辅助加热燃料电池实现低温冷启动;利用燃料电池及电机循环废热组成多热源热泵空调,改善低温下热泵能效值低的缺点,并能避免车外换热器结霜。
本发明实施例公开了一种动车组用车下燃料电池动力集成系统,其包括:安装在安装架上的燃料电池电堆系统、水热管理系统、空气供给系统、氢气供给系统、消防灭火系统、电控系统、氢气回收系统、增湿器、锂电池和空气泵;水热管理系统能够为系统提供冷却介质并对系统运行后的内部热进行管理;空气供给系统能够为电堆提供化学反应所需的空气;氢气供给系统能够提供为电堆化学反应所需的氢气;消防灭火系统能够及时发现集成系统出现火灾状况并进行灭火处理,为动车组及车上人员的安全提供了安全保障。本发明具有易于车辆维护、无电网运行、低温环境启动能力强、环境适应性强和车辆运行过程中“零”排放、绿色环保,安全性高等。
本实用新型公开了一种液冷辅助的相变材料换热的电池热管理系统结构,包括通过液冷换热器相连接的液冷辅助系统和电池热管理模组,电池热管理模组由模组外壳、电池模块和液冷换热器构成,模组外壳为通过成形工艺构成的密闭真空容器,其内部填充相变材料,下部留有电池模块嵌入凹道或电极开口;电池模块布置在模组外壳的外部凹道形成两侧面和顶面的间接接触换热,或布置于模组外壳内部形成电池模块全外表面浸泡换热结构;液冷换热器设置于模组外壳上部,两端连接模组外壳的进液口和出液口;相变材料为低沸点相变材料。本实用新型利用相变材料蒸发、冷凝原理换热,完全适应高负荷工况,保证电池温度均匀性,减少能耗,相变储热效果好。
本发明的目的在于提供一种基于极耳与模组底部联合液冷散热的动力电池热管理系统,包括电芯、正极耳、负极耳、连接排、极耳液冷板、隔离框、均热膜、底液冷板、底隔热垫。通过连接排连接电芯正、负极,再由左、右端板和外围紧固绑带固定成组;系统上部设置隔离框,通过结构胶粘于电芯顶面,隔离框设置前、后两槽道填平导热胶后铺设均热膜,均热膜上方设置极耳液冷板;电芯底部从上到下依次设有下液冷板、底均热膜、底隔热垫。本发明基于电芯极耳与底部联合液冷散热,系统结构紧凑、温度均匀性高、散热效果好;上、下液冷板夹持模组,可进一步强化系统可靠性。
本发明公开了一种集成式燃料电池汽车热管理系统,系统结合了热泵空调技术,能够保证燃料电池热管理、动力电池热管理、驾驶室热管理以及电机电气热管理各子系统之间协同工作和对各子系统的热量进行协同管理。在考虑燃料电池和动力电池系统温度需求的同时,根据驾驶室的温度要求,对系统的工况模式进行分类。本发明能够有效地利用可用余热,在保证各个子系统可靠性与安全性的前提下,提高整车能源利用率,对燃料电池汽车的应用发展具有重要意义。
本发明公开了一种具有全气候多模式切换功能的新能源电动汽车整车热管理系统,包括具有全气候多模式切换功能的制冷 制热系统和电池组;制冷 制热系统包括空气压缩机、四通换向阀、气液分离器、膨胀阀、换热器、循环泵、电磁阀组、三通阀组、翅片换热器组,电池组包括电池箱体、均压分流复合器、均压器和汇流器,电池箱体内包含有若干个电池单体,每两块电池单体之间设有一蓄热式主动 被动结合液体控温单元。本发明的新能源电动汽车热管理系统具有多种工作模式,方便在炎热、寒冷等不同的气候条件下进行切换,并且合理地结合了单相强制对流换热、固-液相变换热和气-液相变换热的多重优势,满足车厢内部温度调节和动力电池控温、均温需求。
本发明公开了一种锂电池包热管理系统,其包括用于安装电池的电池箱体、设置在电池箱体的外侧的温度调节装置以及设置在电池箱体顶部的电池箱体盖;电池箱体包括底板、设置在底板两端的呈U型的端部挡板以及设置在两个端部挡板之间的呈U型的导热隔板;其中,两个端部挡板的开口端相对设置,导热隔板水平横向设置;端部挡板与导热隔板以及导热隔板与导热隔板之间设有与电池单体的形状大小相配合的间隙;端部挡板形成的空腔内设有第一相变材料复合板,导热隔板形成的空腔内设有第二相变材料复合板。该发明能有效的将电池包的温度和温差控制在合理的范围之内,能改善汽车冷启动问题和南北地理位置和夏冬环境温度对电池能效、寿命和安全带来的问题。
本发明的目的在于提供一种基于交替性开闭的可控式风冷电池热管理系统,包括:电芯、电池风箱、导流板、压缩机、冷凝器、蒸发器、内循环风机,加热器、外循环风机。通过管路将电池散热单元,内循环风冷单元,外循环风冷单元,压缩机组制冷单元串接成可交替性开闭的主动控制型风冷电池热管理系统。本发明通过设置两个独立且对称风道,按照一定频率交替性开闭风口,基于对称性的风道结构可以平衡电池风箱内不同位置电芯的温度差异,设计两个独立支路可以实现对热管理系统的主动控制,大大增加电池模组的温度均匀性。
本发明的目的在于提供一种动力电池液冷动态热管理系统,包括电池模组、液冷板、外循环泵、储液箱、多功能传感器、内循环泵、加热器、压缩机、冷凝器、蒸发器、板式换热器、充放电仪,其组成了电池液冷单元、压缩机组制冷单元、液冷内循环单元、液冷外循环单元、环境模拟单元、数据采集单元和电池充放电单元等。本发明多支路设计可以保证系统根据电池产热功率选择合适的热管理策略进行工作,实现对整个动力电池液冷热管理系统的动态监测和智能控制,可以大大降低系统能耗。
本发明的目的在于提供一种基于极耳液冷方式的动力电池热管理系统,包括电池模组、极耳液冷板、储液箱、加热器、内循环水泵、外循环水泵、压缩机、冷凝器、膨胀阀、蒸发器、板式换热器,构成电池极耳液冷单元、压缩机组主制冷单元、板式换热器副冷却单元、液冷内循环单元和液冷外循环单元。本发明为基于极耳液冷方式的动力电池热管理系统,通过流通的冷媒在电池极耳处散、预热,可以大大减小换热热阻,利于电池更快速换热,提高热管理效率,系统集成度高。
本发明的目的在于提供一种基于正压直吹式风冷优化的动力电池热管理系统,包括电池模组、集气腔、射风孔、压缩机、冷凝器、蒸发器、内循环风机、外循环风机,加热器。系统采用正压直吹式射风,冷风在集气腔内温度一致,集气腔内开有射风孔,出风孔正对电芯最大面,可平衡传统风冷温度沿流动方向逐渐积累的效应,提高温度均匀性;压缩机组采用制冷、热旁通、喷液冷却三种回路结合的方式,配合智能控制器,对压缩机组气路各段进行温度、压力主动调节;内循环回路设有加热器,可集成散热和预热功能;电池箱内装有导流板,可减小风阻,增强扰流,强化换热。
本发明涉及一种燃料电池汽车热管理系统中的模型参考自适应控制方法。燃料电池热管理系统的控制是保证燃料电池系统可靠运行的一个关键因素,由于热管理系统具有高度的非线性,模型参数存在不确定性,特别是存在外部温度和负载动态变化的情况下,系统温度控制容易出现跟踪滞后、超调量大等缺点。针对以上问题,本发明设计了一种模型参考自适应控制方法,通过调节冷却液质量流量和旁通阀开启系数,对电堆温度和循环冷却液入口温度进行控制。本发明的控制方法简洁高效,可方便地应用于各种功率等级的燃料电池系统中,实时有效的进行温度控制。