本实用新型实施例提供一种液冷扁管及电源装置,属于电池热管理技术领域。所述液冷扁管用于对电源装置内的电池模组进行热管理,该液冷扁管设有进液口、出液口以及连通所述进液口和出液口的液体流通通道,该液冷扁管的管体表面还设有绝缘喷塑层。在液冷扁管的管体表面进行喷塑处理,形成绝缘喷塑层,使液冷扁管与电池之间处于绝缘状态,与现有缠绕绝缘胶带相比,工序简单,易操作,而且该种液冷扁管的外形也更加美观。
本实用新型实施例提供一种液冷扁管及电源装置,属于电池热管理技术领域。所述液冷扁管用于对电源装置内的电池模组进行热管理,该液冷扁管设有进液口、出液口以及连通所述进液口和出液口的液体流通通道,该液冷扁管的管体表面还设有绝缘氧化层。在液冷扁管的管体表面进行电解氧化处理,形成绝缘氧化层,使液冷扁管与电池之间处于绝缘状态,与现有缠绕绝缘胶带相比,工序简单,易操作,而且该种液冷扁管的外形也更加美观。
本发明涉及一种电池组热管理装置,尤其是一种电动汽车石墨烯动力电池组热管理系统。一种石墨烯电池热管理装置,包括若干电池单体、石墨烯薄膜和自动散热保温栅;若干所述电池单体形成电池组,所述石墨烯薄膜中部与所述电池单体壳体接触,所述自动散热保温栅包括散热栅和散热触头,所述石墨烯薄膜两端与所述散热触头连接,所述散热触头之间具有间隙,当所述散热触头受热膨胀时,所述散热触头与所述散热栅接触。本发明可以实现电池组低温保温和减小电池单体温度差的作用;随温度变化,散热触头与栅基体接触或分离,而且散热触头选择不同的材料,散热触头与栅基体接触的温度点也不同,增大了石墨烯电池热管理装置的适应性。
本实用新型提供了一种车用热管理系统及具有其的车辆,其包括:电池热管理回路,其包括串联形成闭合回路的冷却器、水泵、第一加热器、动力电池以及双效换热器;以及空调热管理回路,其流经所述电池热管理回路中的冷却器,并为其提供冷量;其中,所述双效换热器经由第一驱动部件与车辆后舱强制对流。本实用新型的车用热管理系统及具有其的车辆,通过与动力电池共用一套空调制冷回路,并采用双效换热器分配了一部分动力电池的加热量或制冷量给车辆后舱,进而提高后排乘客的舒适性。如此能够有效改善车辆后空调的制冷 供暖性能,且避免再增加一制冷回路所带来的空调系统性能不稳定的缺陷。
本实用新型提供了一种热管理装置、电池模组和电源装置,热管理装置包括液冷扁管和绝缘导热垫,所述液冷扁管包括进液口、出液口以及连通所述进液口与所述出液口的冷却液流通通道,所述液冷扁管设置于所述电池模组内,且所述液冷扁管的至少一段位于任意相邻的两层子模组间的空隙处;所述绝缘导热垫呈套筒式套设于所述液冷扁管上且与所述液冷扁管贴合。将绝缘导热垫设置成套筒式的结构,在组合安装的过程中,直接将绝缘导热垫套在液冷扁管上即可,不必使用粘结剂,操作简单方便,工作效率更高。套筒式绝缘导热垫与液冷扁管贴合更紧密,导热效果更好。
本实用新型提供一种热管理装置及电源装置,其中,所述热管理装置应用于包括多个单体电池的电池模组。所述热管理装置包括设于所述电池模组的液冷扁管,所述液冷扁管的两端均设有进液口和出液口,所述液冷扁管其中一端的进液口与另一端对应的出液口通过管道连通。通过上述设置,可以中和所述液冷扁管内不同管道中的冷却液之间的温度差。
本发明公开了一种用于锂离子电池热管理系统的相变材料热仿真分析方法,包含:步骤1,建立小球状相变材料热仿真分析模型;步骤2,基于非线性1阶球坐标热传导基础方程式和有限差分法解析;步骤3,针对相变过程,导入热晗与温度关系式;步骤4,针对小球状相变材料定义热仿真分析所需的材料属性、边界条件、初始温度;步骤5,采用EXCEL2010宏功能进行方程式运算,实现相变材料的热仿真分析;步骤6,试验验证。本发明能够在没有专业软件的条件下,通过EXCEL平台实现相变材料的热仿真分析,判断相变过程中物质变化状态、温度,为潜热散热 加热设计提供有力参考,可扩展至其他相变材料的热仿真分析,应用广泛。
本实用新型涉及一种模块化锂离子电池热管理系统,属于锂离子电池制造技术领域。包括锂离子电池模块、热管理模块和控制系统模块,控制系统模块与热管理模块相连接;所述热管理模块包括加热系统和冷却系统,加热系统包括电加热薄膜和电源,电加热薄膜设于锂离子电池模块中的上下两个锂离子电池之间,电源给电加热薄膜供电;冷却系统包括冷却水、循环液体流道和水泵,循环液体流道设于锂离子电池模块中的上下两个锂离子电池之间。本实用新型的冷却系统和加热系统采用单独控制,可以独立控制电池不同区域的温度,保障了电池间温度的均衡性,使电池的性能最大效率的发挥,同时提高了电池的使用寿命及安全性能,模块化的设计方便维护和维修。
本实用新型涉及一种锂离子电池热管理系统,属于锂离子电池制造技术领域。包括液体循环系统和控制系统,液体循环系统包括设置于锂离子电芯之间的液体流道,液体流道的两端通过液体输送管道分别连接液体加热系统和液体冷却系统,液体加热系统包括电机、液体加热装置、导热液体和热液储液罐,液体冷却系统包括电机、液体冷却装置、导热液体和冷液储液罐;控制系统包括温度传感器和微处理器,温度传感器用于检测锂离子电芯温度,微处理器用于控制液体冷却系统和液体加热系统的开启与关闭。本实用新型可以独立控制不同区域温度,保障了电芯间温度的均衡性,使电芯性能最大效率的发挥,提高了电芯的使用寿命及安全性能。
本发明提供一种热管理装置及电池模组,涉及电池热管理技术领域,电池模组包括底板、设置于底板的多个单体电池和热管理装置。热管理装置包括导热部件、加热器件和散热器。多个单体电池划分为多层子模组,导热部件设置于多层子模组之间,导热部件与加热器件连接,导热部件与散热器连接。当电池模组内温度过高时,导热部件能够及时吸收热量并通过散热器带走热量,达到对电池模组散热的目的。同样地,当电池模组在低温环境下工作时,加热器件通过导热部件将热量传递给电池模组,以达到为电池模组加热升温的目的。从而使得电池模组工作在较佳充放电状态。
本实用新型涉及一种同时具有电池单体均衡与热管理功能的智能电池组,其特征在于,所述智能电池组包括至少两个智能电池箱、一个能量池和一个主控制器,所述智能电池箱模块设置在能量池和主控制器之间。本实用新型专利能够实现电池组的无损均衡与热管理功能,显著提高了均衡速度并有效降低了成本,电池箱具有模块化特点,可以通过电池箱串、并联组成任意电压与容量等级的电池组。
本发明涉及一种适用于寒冷地区纯电动客车的电池热管理系统。包括依次设置的水箱、循环水泵和电池箱,上述部件通过水管路连接成回路,水箱内设有加热装置和第一温度传感器,电池箱内设有第二温度传感器,第一温度传感器与第二温度传感器与控制器相连,控制器的输出端与显示器相连,电池箱及水箱外分别包裹有保温装置,电池箱的一侧侧壁上设有散热片,散热片的进液口与循环水泵相连,散热片的出液口与水箱相连。由上述技术方案可知,本发明的循环水泵将水箱中的液体带进水管路,再经过各个电池箱,并由散热片将液体的热量传递到电池箱中,使得电池箱中的温度达到设定的温度,并可始终保持在一个适合锂离子电池工作的温度区间。