本发明公开了一种新型多功能环保航标灯,包括航标灯主体,航标灯主体内部还固定设置有电池组模块;清洁能源互补发电系统包括太阳能发电装置、风能发电装置和波浪能发电装置;多信息采集系统包括气象信息采集模块、水文信息采集模块和油污检测模块;定位与通讯系统,用于获取航标灯的位置信息和远程数据通讯;远程管理系统,用于通过人机交互界面显示接收到的航标灯位置信息、气象信息、水文信息和油污信息,对航标灯的偏移情况、航标灯的明暗状态、电池组模块的充电情况进行实时监控,当航标灯工作状态发生异常时进行自动报警。本发明利用太阳能、风能、波浪能供电,能自动地对海面波浪、气温和气压的等水文气象要素进行遥测。
本发明提供一种热管理装置的制造方法及热管理装置。所述热管理装置的制造方法包括提供一所述热管理装置的模具,所述模具包括相对设置的底板和设置在所述底板上的壁板,所述底板上还设置有多个与电池单体匹配的电芯模型。在所述模具相邻两排所述电芯模型之间放入有冷却通道模型。所述模具中注入有固化材料,并使所述固化材料固化成型。待所述固化材料成型后,去除所述冷却通道模型,以在成型后的所述固化材料中形成冷却通道。与现有技术相比,所述热管理装置的制造方法简单实用,制作热管理装置速度快,制造的热管理装置带有冷却通道,使热管理装置的冷却效果好。
本发明实施例提供一种电池模组及均温结构,所述电池模组包括热管理装置和多个单体电池,该电池模组还包括均温结构,该均温结构包括至少一个分别与所述热管理装置和至少一个所述单体电池接触的均温件,该均温件用于将所述热管理装置的热量或冷量传导至所述单体电池。所述电池模组及均温结构能够给与所述均温件接触的单体电池降温或升温以使该单体电池的温度与内部的单体电池的温度更接近。
本发明提供了一种均布式热管理系统及电池,所述电池包括多个电池模组,所述均布式热管理系统包括多个热管理装置,所述热管理装置包括:设置于相邻两个电池模组之间用于传递热量的热传递组件;贴合于所述热传递组件热发生组件;与所述热传递组件及所述热发生组件相连的控制组件,所述控制组件控制所述热发生组件对所述热传递组件进行加热。通过每个贴合在所述热传递组件上的热发生组件单独地对所述热传递组件进行加热,所述热传递组件再将热量传递给所述电池模组。如此,可以更有针对性地对不同温度的电池模组进行更精确的温度控制,而且所述热传递组件被均匀加热,使得电池模组接收的温度也更加均匀。
本发明提供一种半密封电源系统及汽车。半密封电源系统包括半密封电池装置,半密封电池装置包括:电池模组及半密封元件。电池模组包括用于固定所述电池模组的模组支架,相邻电池模组通过模组支架进行连接,相邻电池模组之间的模组支架形成用于进行电池模组内外气体交换的气孔,半密封元件与模组支架固定连接,半密封元件覆盖在气孔表面上,半密封元件可相对于气孔发生形变运动,以使气孔开启或密闭。由此,当电池模组内部产生高压时,可通过气孔将高压气体排出,防止电池模组爆炸;当进行风冷热管理操作时,可将气孔密闭,不会扰乱风冷气体的流场,避免对风冷效果造成影响。
本发明实施例提供一种热管理装置及动力电源装置,属于电池热管理技术领域。所述热管理装置包括液冷扁管以及至少一个导热套筒。所述导热套筒套设于单体电池上,将所述单体电池散发出的热量传递至液冷扁管。所述液冷扁管绕设于动力电池模组中的多排电池组之间,通过液体管道内冷却液的流动将吸收的热量散发到动力电池模组外。与现有的一些电池散热技术相比,本发明实施例提供的热管理装置具有更好的散热效果,能够满足高散热需求的动力电池模组,可以更好的保障动力电源装置的使用安全。
本发明提供一种电池模组及电池模组热管理系统,涉及电池模组技术领域。所述电池模组包括加热部、多个单体电池、储热部以及导热套。所述导热套套设在每个单体电池上,并与每个所述单体电池接触,所述加热部与每个导热套接触。所述加热部通过对导热套加热,进而均匀地加热单体电池,所述储热部用于维持电池模组的温度。该电池模组通过加热部加热单体电池,可避免电池模组在低温环境下充放电容量低,以及因低温而造成单体电池内部短路等问题,延长了电池模组的使用寿命,并提高了电池模组的安全性能。
本实用新型提出了一种电池包的热管理装置,用于均衡电池模组中电芯的温度,包括风机、加热丝、控制装置、箱体,所述电池模组设置在所述箱体内,所述风机固定在所述电池模组上,所述加热丝设置在箱体上与所述风机对应的位置处,所述控制装置包括与电池模组连接的温度采集模块和与风机连接的调节模块,所述采集模块用于采集电池模组中电芯的温度,所述调节模块用于根据采集模块采集到的温度来调节加热丝的通断和风机的转速。本实用新型的电池包的热管理装置,通过风机、控制装置和加热丝的配合可实现调节电池包中电池模组的温度,提高了电池包的性能。
本实用新型的一种电池箱,包括箱体,在箱体内侧,紧邻箱体内壁设置导热层,导热层将电池模块紧密包裹;箱体外侧,紧邻箱体外壁设置隔热层,或者在箱体内壁与导热层之间设有隔热层,且所述的隔热层材料的导热率低于导热层材料的导热率。电池箱还包括热管理系统,热管理系统设置在电池箱外侧,与电池内部导热层通过导热材料连接,导热材料与导热层材料相同。本实用新型:通过设置导热层,均衡电池系统内的温差,使电池系统的每个电池模块温度保持相同,提高电池系统内的一致性,从而提高电池性能和寿命;将电池系统内的空气尽可能排除,减少了电池系统内的水蒸气。热管理系统根据电池模块内部温度,对导热材料实施加热或冷却,间接控制电池温度。
本实用新型提供了一种热管理设备及电池模组,涉及设备的散热领域。所述热管理设备包括两条冷却液体流通通路。两个散热板相对设置在电池组两侧,分别与所述两条冷却液体流通通路连通。位置传感器用于检测所述电池组竖直状态。通道切换装置与所述位置传感器连接,用于控制所述两条冷却液体流通通路的打开或关闭,在同一时间只有当竖直方向位置在上的所述散热板对应的所述冷却液体流通通路才开启。所述热管理设备及电池模组可进一步降低设备温度,延长设备运行时间。
本发明提供一种纯电动汽车整车多功能一体化热管理系统,其特征在于该系统可实现纯电动汽车的冬季供热、夏季制冷、动力电池冷热管理、动力电机冷却、车窗快速融霜与除雾、车外空调换热器快速融霜等多种热功能的整车一体化热管理。该系统主要由一个一体化热管理热力循环动力模块,一个一体化热管理共用辅助设备模块,一个车内多种热功能组合模块,一个车外多种热功能组合模块,一个动力电池冷热管理组合模块,一个动力电机冷却循环模块,一个多功能一体化热管理控制以及连接管道等组成。
本发明公开了一种电动车辆加热系统,包括控制单元、导热液加热单元、三通电磁阀、电池舱单元和乘客舱单元;电池舱单元包括第一换热器模块、电池舱模块以及连接于换热器模块以及电池舱模块之间的通道;第一换热器模块包括壳体、热交换管路、第一风机;电池舱模块包括舱体、电池组、第一温度传感器、第二温度传感器、第三温度传感器以及第二风机;乘客舱单元包括乘客舱、侧置于乘客舱的第二换热器及第四温度传感器,第四温度传感器用于检测乘客舱的温度;控制单元用于根据所述第一、第二、第三、第四温度传感器的信号控制三通电磁阀自动切换连接电池舱单元和乘客舱单元,从而控制电池舱单元和乘客舱单元的温度。本发明还提供一种上述系统的控制方法。