本发明公开了一种含有仿生表面微结构散热件的空冷圆柱动力电池包,属于动力电池热管理技术领域。该电池包主要包括风扇,外壳,绝缘固定架,仿生表面微结构散热件,圆柱动力电池。其中,仿生表面微结构散热件的曲面外侧与电池表面接触,曲面内侧设有仿生表面微结构。圆柱动力电池轴向布置,当风扇驱动冷却气流进入电池包后,仿生表面微结构散热件可提高冷却气流与电池之间的换热效率。绝缘固定架安装在每排电池之间,起支撑和绝缘作用。本发明在传统轴向风冷的基础上,增加仿生表面微结构散热件,不改变电池包的尺寸和结构,具有安装方便、结构简单、散热效果强化等优点。
本发明提供了一种锂离子电池快速充电策略的制定方法,该方法综合考虑了电池析锂及产热两个方面的影响因素。该方法首先以无损检测方式测得电池在不同充电电流下发生析锂的阈值电压。同时,通过在近似绝热环境下测得电池在不同充电电流下的产热速率,并结合电池应用场景的热管理设计中限定的电池允许的最大产热速率,获得对应的电池的最大安全充电电流。然后,以析锂阈值电压及上限使用电压与最大安全充电电流构建电池充电策略可选择的充电电流及对应的截止电压,并以尽量缩短电池充电时间为优选条件,合理设计快速充电策略。
一种热管理模块及其组装方法,该热管理模块包括固定连接的外壳和管道,所述外壳内设有第一环形密封件和可旋转的阀体,所述第一环形密封件抵靠在所述阀体上以进行第一密封;所述第一环形密封件的轴向一端伸入所述管道内,并与所述管道的内周面相抵以进行第二密封。本技术方案降低了外壳的制造成本,缩短了热管理模块的组装时间。
本发明提供了一种动力电池工作异常的检测方法及系统,包括:平均发热量获取步骤:计算动力电池在第一时刻到第二时刻内的平均发热量;发热量限值获取步骤:获取动力电池在生命周期内的发热量限值;决策步骤:判断所述发热量限值是否大于等于所述平均发热量,若判断结果为是,则动力电池工作正常,若判断结果为否,则动力电池工作异常。本发明有效的解决了当前技术中易出现的电池已处于异常状态,但由于电池热管理性能较好,电池未达到温度异常阈值从而未报警的检测死角问题。
本发明公开了一种新型氢能汽车二级冷却系统,包含第一散热器及冷却风扇总成、第二散热器及冷却风扇总成及电子水泵、第一温度传感器、第二温度传感器,电子水泵、第一温度传感器、第二温度传感器、第一散热器及冷却风扇总成、第二散热器及冷却风扇总成分别连接至一热管理控制器,热管理控制器根据流过驱动系统前、后的水温的温差,分别控制电子水泵、第一散热器及冷却风扇总成及第二散热器及冷却风扇总成,调节水电子泵的水流速、第一散热器及冷却风扇总成和第二散热器及冷却风扇总成的冷却风扇的转速,分别进行分级调整。本发明可以适用于不同工况,在满足散热需求的同时,达到节约能耗的需求。
本发明属散热控温技术领域,公开一种用于电池热管理系统的相变材料模块及其制备方法和应用。所述相变材料模块包含高导热密胺骨架和改性相变材料;其中,所述的高导热密胺海绵骨架是将密胺海绵经机械成型后,置于氧化石墨烯溶液中反复压缩浸泡,在35~45℃烘干,反复压缩浸泡-烘干制得;所述的改性相变材料是将相变材料在70~120℃加热成熔融液态,加入导热剂熔融共混搅拌,得到二元复合相变材料,然后加入阻燃剂,熔融共混搅拌制得。本发明相变材料模块插入高导热结构和电池后,不仅能解决电池热管理模组成型时的缺陷问题,还能更加精细化定制高效的散热结构,尤其是在一些大型电池模组的电池热管理系统的开发上。
本发明涉及一种大型碱性电解水制氢装置的综合热管理系统,该系统包括碱性电解水制氢装置和热管理装置,碱性电解水制氢装置包括电解槽和气液分离器,气液分离器的碱液输出端通过碱液循环回路连接至电解槽,热管理装置包括热管理综合换热器、气液分离换热器和碱液循环换热器,气液分离换热器设置在电解槽和气液分离器之间,碱液循环换热器设置在碱液循环回路中,气液分离换热器和热管理综合换热器的换热介质进出口连通形成用于冷却电解槽输出的气液混合状态碱液的第一换热回路,碱液循环换热器和热管理综合换热器的换热介质进出口连通形成用于加热输入至电解槽中的碱液的第二换热回路。与现有技术相比,本发明能实现热能的有效综合利用、适应性好。
本发明公开了一种电动汽车的热管理系统和具有它的电动汽车。该电动汽车的热管理系统包括:与液冷冷凝器热连通的制冷剂循环回路和暖风采暖循环回路,制冷剂循环回路包括:第一支路、第二支路、与液冷冷凝器热连通的液冷冷凝器支路、与第二冷凝器热连通的第二冷凝器支路,制冷剂循环回路上设置有四通阀;制冷剂循环回路还包括:与换热器热连通的换热器支路;热管理系统还包括:与换热器热连通的电池冷却加热循环回路,电池冷却加热循环回路上设置有动力电池换热通道。根据本发明实施例的电动汽车的热管理系统,通过控制制冷剂循环回路内冷却液的流动路径,以热泵原理调节乘员舱和动力电池的温度,从而有利于减少调节乘员舱和动力电池温度的能耗。
一种车辆低能耗热管理系统,包括空调降温回路、采暖回路、电驱冷却回路和电池热管理回路。在空调降温回路的水冷冷凝器与采暖回路和电驱冷却回路之间设置一个三通阀A,通过控制三通阀A在第一模式和第二模式之间切换,使水冷冷凝器在所述第一模式下接入采暖回路,或在所述第二模式下接入电驱冷却回路。本发明可以通过多回路使用水冷冷凝器,在高温环境下降低压缩机功耗,实现快速降温;在低温环境下利用压缩机热量给乘员舱加热。既兼顾电动车整车降温、采暖、驱动电池的冷却、驱动电池的加热,确保用户的舒适性、整车动力性,又降低了热管理系统耗电。
本实用新型提供了一种热管理系统,包括压缩机、室内冷凝器、第一三通管道、集成阀、室外换热器、储液罐、膨胀阀、蒸发器、第二三通管道、气液分离器、第三三通管道;所述集成阀上设置有流体通道,流体通道包括第一流体通道、第二流体通道、第三流体通道、第四流体通道、第五流体通道、第六流体通道以及第七流体通道。本实用新型结构简单紧凑,易于空间布置且占用面积小,适用于汽车热管理,热管理系统的不同模式可以满足汽车的采暖和空调降温需求,提高了乘坐舒适性。本实用新型中的集成阀将多个阀体集成后通过一个执行机构控制,节省成本的同时简化了控制逻辑。
本发明公开了一种蓄电池组热管理装置及方法,所述装置包括壳体,其特征在于:所述壳体内设有左中右三个腔室,依顺分别安置有控制模块、蓄电池组以及散热模块,所述壳体右侧壁上设置有用于排风降温通孔一,左侧壁上设置有用于平衡壳体内部气压的通孔二,中腔室的前后壁板下部安置有若干加热模块,其中所述控制模块分别与所述加热模块、散热模块和蓄电池组电连接。本发明为一种温度可调控的蓄电池组热管理装置,可工作于最优工作温度下,从而增加蓄电池组放电容量,增大电动汽车行驶里程。尤其对于电动汽车冬季行驶,可以明显提高行驶里程。
本发明公开了一种扰流管和相变材料协同耦合的电池热管理系统及其控制方法,该系统包括相变材料储存装置、扰流管主管道和扰流管副管道,相变材料储存装置内填充有相变材料,扰流管主管道和扰流管副管道设置在相变材料储存装置中,两个所述相变材料储存装置相互密封连接,内部形成多个圆柱形空腔,圆柱形空腔内设置有电池套筒,电池套筒表面为镂空结构,在电池套筒的镂空处均匀分布有防火微球。本发明基于协同原理将扰流管和相变材料进行耦合,经过模拟实验后发现,扰流管和相变材料结合能够有效延缓相变材料熔化速率,相比于一般的相变材料热管理系统能够提高电池包内部的温度均匀性。