本发明公开了一种基于复合仿生结构的圆柱锂离子电池热管理系统,包括电池模组,所述电池模组包括圆柱电池、冷却板和空心导热柱,所述冷却板表面根据蜂窝结构加工圆形通孔,所述圆形通孔横截面与圆柱电池的横截面相同,冷却板通过圆形通孔套在圆柱电池上,所述冷却板内部根据类蜘蛛网形状和蜂窝结构加工仿生通道,所述空心导热柱内部填充相变材料。本发明将液冷和相变蓄热结合,当电池局部温度大于其融化温度时,发生相变吸热,自动调节电池模组整体温度分布;冷却效果良好,温度均匀分布,模块化的设计使其更加适合应用在大型锂离子电池包中。
本发明公开一种用于车辆的电池的热管理系统。该系统包括:储罐,位于车辆外部,并且储罐中储存制冷剂;制冷剂供应管路,用于将制冷剂从储罐供应到热交换回路,该热交换回路与安装在车辆中的电池进行热交换;制冷剂回收管路,用于回收从热交换回路排出的制冷剂;线缆,线缆的一端连接到储罐,并且线缆中包括制冷剂供应管路或制冷剂回收管路;以及连接器,设置在线缆的另一端,当连接器联接到车辆时,连接器将线缆中的制冷剂供应管路或制冷剂回收管路连接到热交换回路的入口或出口。
本发明公开了一种深度剥除的光纤导引式高功率光纤包层光剥除器,采用多根光波导引导泄露的新颖方法,使得大部分泄漏的包层光不再累积在双包层传输光纤上,而是通过光纤传输到任意的地方进行充分散热和耗散,通过包层光剥除器输出端的光纤椎体直径、泄漏光导引光纤直径对包层光剥除器的剥除深度进行控制,不仅可以滤除包层光纤内残留泵浦光,还可以滤除包层光纤内的高阶激光模。本发明可以适用于更高的承载功率,并且可以将废光通过光纤引导至任意地方,更方便热管理设计;同时,避免了传统剥除器中双包层光纤的高温度问题,使得纤芯中高功率激光传输和包层中包层光剥除更安全和可靠。
本发明提供了一种纯电动工程设备的散热控制方法、系统及电子设备,涉及工程设备散热控制领域,该方法通过设置在纯电动工程设备中的环境温度传感器以及电驱系统温度传感器,分别获取纯电动工程设备的环境温度以及电机控制器温度;纯电动工程设备中的VCU控制器将获取的环境温度以及电机控制器温度,分别发送至纯电动工程设备中的风扇控制器中,将环境温度与预设环境温度阈值进行对比,确定纯电动工程设备中的双向散热风扇的风向;将电机控制器温度与预设风力调节温度阈值进行对比,确定电动工程设备中的双向散热风扇的风力。该方法可根据环境温度以及电机控制器温度变化调节风扇转向和转速,增加了热管理使用场景,提高了动力电池充放电效率。
本发明提供了一种基于超临界介质的闭式循环热管理集成系统,所述系统包括:发动机冷却子系统、冷却介质压缩子系统、功率输出子系统、回热子系统和燃油换热子系统。本发明所提供的一种基于超临界介质的闭式循环热管理集成系统以超临界二氧化碳作为介质采用微通道高效换热器可将热端壁面温度降低的同时输出功率。相比于燃油直接冷却方案,可降低燃油温升,避免了燃油的气化结焦风险,解决燃油热沉不足等问题。经过吸热后的超临界二氧化碳可利用涡轮膨胀输出功率或发电。可将约30%-40%热量(目前国内闭式循环效率约30%)转化为轴功或电加以利用,可解决综合能源系统的功率提取问题。
本申请公开了一种动力电池包及具有其的车辆,所述动力电池包包括:多个单体电池;热管理系统,所述热管理系统包括液冷板,所述液冷板具有多个并排的进水管和多个并排的出水管,且所述多个并排的所述进水管和所述多个并排的出水管交错间隔开布置,所述进水管的第一端与相邻的一个所述出水管的第一端相连以形成流通回路,所述进水管的第二端设置为进水口,所述出水管的第二端设置为出水口。根据本申请的动力电池包,通过设置多个进水管和多个出水管以形成多个流通回路,从而提升了动力电池包的热管理系统内部温度的均一性,也提升了动力电池包的换热效率。
本发明公开了一种动力电池包及具有其的车辆,包括:第一层单体电池组和第二层单体电池组,所述第二层单体电池组与所述第一层单体电池组层叠设置;热管理组件,所述热管理组件设于所述第一层单体电池组和所述第二层单体电池组之间,且具有靠近所述第一层单体电池组的第一换热腔和靠近所述第二层单体电池组的第二换热腔,所述第一换热腔和所述第二换热腔连通。根据本发明的动力电池包,通过在第一层单体电池组和第二层单体电池组之间设置热管理组件,且热管理组件设有第一换热腔和第二换热腔,使热管理组件能同时对第一层单体电池组和第二单体电池组进行换热,且热管理组件的结构简单、紧凑,从而方便热管理组件在电池包内的布置。
本发明涉及车辆的集成热管理模块。该模块可以包括:激冷器、第一储液部、第二储液部、第一泵、第一阀、第二泵以及第二阀,电气部件冷却水通过所述第一储液部;高压电池冷却水通过所述第二储液部;所述第一泵使电气部件冷却水循环通过电气部分;所述第一阀控制已经通过激冷器的冷却水或第一储液部的冷却水以选择性地利用第一泵循环通过电气部分;所述第二泵使高压电池冷却水循环通过高压电池;所述第二阀控制已经通过激冷器的冷却水或第二储液部的冷却水以选择性地利用第二泵循环通过高压电池。
一种空间用高功率设备热管理装置,包括热电模块、控制器、温度传感器、相变模块、绝热板以及热沉。所述热电模块利用帕尔贴效应实现冷端制冷,热端制热。所述热电模块一端与高功率设备通过高导热材料实现热传导,所述相变模块通过高导热材料与热电模块另一端连通,所述相变模块包含相变模块上盖板、相变模块腔体、相变模块栅格、相变材料以及隔热材料,所述相变材料存储于相变模块栅格中,所述相变模块底部通过高导热材料与热沉相连,所述热沉为平板结构,所述控制器包含电源模块、温度采集模块、热电驱动模块。该发明具有结构简单,调节灵活,适用范围广等优点,可以广泛应用于空间用高功率载荷的温度控制。
本发明涉及车辆的热管理系统。该系统可以包括:电池管线、引入管线、排出管线、制冷剂管线以及水冷式冷凝器,所述电池管线连接到高压电池芯部并具有第一散热器,并且冷却水通过第一泵而流过所述电池管线;所述引入管线具有连接到第一散热器的上游侧的一端和连接到内部空调加热芯部的另一端,并且冷却水通过第二泵而流过所述引入管线;所述排出管线具有连接到电池管线中的高压电池芯部的上游侧的一端和连接到内部空调加热芯部的另一端,并且通过引入管线引入的冷却水流过所述排出管线;所述制冷剂管线具有膨胀阀、内部空调冷却芯部、压缩机以及风冷式冷凝器,并且制冷剂流过所述制冷剂管线;所述水冷式冷凝器连接制冷剂管线和引入管线。
本发明公开了一种电动汽车电池包及其电池模组热管理单元,涉及电池技术领域,具体包括脉动热管、液冷板、风力源、集成式水箱、热源等执行元件,当热管理单元满足第一预定条件和第二预定条件、第三预定条件时分别启动第一模式、第二模式和第三模式,将电池模组的各种参数作为预定条件通过转换确定热管理单元的工作模式,能够更为匹配的调节电池模组的调节温度,耦合加热和散热,采用脉动热管与电池包接触,导热介质的通路不需要经过电池单元之间,可靠性高,解决相关技术中耦合加热和散热的较少,而且采用液体导热的方式可靠性较低的技术问题。
本实用新型提供了一种车用燃料电池电堆,包括两个端板和设置在两个端板之间的化学反应单元,端板远离化学反应单元的一侧设置有温度调节单元,温度调节单元包括换热部件和导热硅胶垫,端板与换热部件通过导热硅胶垫粘接。本公开的方案中,温度调节单元可以调节端板温度、散热效果,有效解决燃料电池电堆正、负两端的“冷边效应”,保持燃料电池电堆性能。