本发明公开一种电池包热管理系统,包括装有电池模组的电池箱、温度感应器、换热器及循环管道,换热器通过循环管道与电池箱连接,温度感应器检测电池箱的内部温度;循环管道设有第一通道及若干第二通道,若干第二通道设于第一通道的内壁上;换热器包括第一换热器、第二换热器及控制器;控制器根据温度感应器的检测结果控制第一换热器及第二换热器分别对第一通道及第二通道中的换热介质加热或制冷,以提高或降低电池箱的内部温度,与现有技术相比,本发明的有益效果在于:通过换热器和控制器将加热或制冷集为一体,通过双通道的循环管道利用两种换热介质进行加热或制冷,有效简化操作提高换热效率并减小体积和重量。
本实用新型涉及一种智能化多回路电动汽车热管理系统,包括动力电池组、驱动电机、电机控制器、车载充电机、DC DC转换器、电池散热器、电池制冷器、电机散热器、电动水泵、电动油泵、膨胀水箱、PTC加热器、热交换器、电动压缩机、冷凝器、储液干燥壶、蒸发器、电子膨胀阀、暖风芯体,通过管路及设于管路中的直通阀、三向阀和四通阀进行相互连接,形成多个热管理控制回路。与现有技术相比,本实用新型形成了满足不同冷却或加热需求的多个回路,这些回路根据电动汽车的动力电池组、电驱模块以及乘员舱空调的特点及工作状态进行选择性开闭,保证电动汽车的温度均衡,保证电动汽车高效运行,系统节能显著,汽车续航里程变长,车辆经济性更佳。
本发明提供了一种电池包的热管理方法,包括:通过数值模拟模拟出电池包中电芯的温升和温差;根据所述温升和温差设计导热装置,所述导热装置包括与所述电芯接触用于导热的导热部和设置在所述导热部外表面的温控面;根据电池包当前工况设计控制导热装置温控面温度的散热装置;本发明还提供了一种电池包的热管理系统。本发明电池包的热管理方法及系统中,通过数值模拟得到电芯的温升和温差,并根据温升和温差设计导热装置,再根据电池包当前工况设计散热装置,并通过散热装置来控制导热装置的温控面,进而实现控制电池包电芯温度的目的,且散热效率高,可靠性好。
本发明公开了一种零能耗的新能源汽车热管理系统,特点是包括空气压缩系统、制冷 制热系统、电池箱体和盘管,空气压缩系统中的空压机通过第一风能转换机构驱动,制冷 制热系统中的压缩机通过第二风能转换机构驱动,制冷 制热系统中的蒸发器与电池箱体的进口端相连接,空气压缩系统与蒸发器相连接,电池箱体内设置有电池组,电池组的空隙处填充有相变材料,盘管的一端通过管道分别与电池箱体的进口端、出口端相连接,盘管的另一端与车内出风口相连通;优点是该热管理系统不需要消耗电能,且能同时对动力电池进行热管理和对车内环境进行温度调节。
本发明提供了一种电池包的液冷式热管理系统,用于管理电池包内电池模组的温度,包括液冷动力源、液冷管、与所述电池包接触的液冷板、热交换器、水箱和在所述液冷管内流动的冷却液,所述液冷动力源、液冷板、热交换器、水箱依次通过所述液冷管连接成一个散热回路,所述水箱用于储存、添加或者更换冷却液,所述液冷动力源为所述冷却液的流动提供动能,推动所述冷却液在所述散热回路中循环流动,所述热交换器用于将高温的冷却液转换为常温的冷却液。本发明的电池包的液冷式热管理系统,通过冷动力源、液冷管、液冷板、热交换器、水箱和冷却液和配合,提高了电池模组的散热效率和均温效率。
本实用新型涉及一种具有环境温度自适应性的电池箱系统,包括电池箱,冷却板、温控系统和循环用管道;其中,所述电池箱的箱壁中含有一层或一层以上的中空层;所述冷却板为中空箱体,设置在电池箱壁上,其中填充冷却液;所述冷却板通过管道与所述中空层循环连通,所述管道上设置有阀门和泵;温控系统,根据实测环境温度和预设温度的对比结果,控制开启阀门和 或泵。本实用新型所述的电池箱系统采用金属多层间隔保温,将结构与保温性能融为一体,能够克服现有电池箱在不同气候条件下难以同时满足较佳的保温系数的缺点,自动实现不同环境条件下最佳的保温系数,最大化满足气候多变的汽车应用工况,实现电池箱热管理系统的最低成本优化方案。
本发明公开了一种应用复合相变材料的散热肋片的圆柱形电池组散热装置及方法,散热肋片由主肋片和副肋片组成,主肋片为全封闭的壳体结构,内部封装有相变材料,由主肋片表面向两侧扩展副肋片,副肋片末端与电池表面相切接触。可通过调整肋片的尺寸与间距、相变材料的厚度来适应不同圆柱形电池的规格尺寸,满足散热与保温性能要求。电池组底部有固定底座,可加固电池组,提高抗震能力,并可外接风扇增强对流,加强散热和保温效果。本发明散热装置充分利用相变材料的优势,提高电池组的温度均匀度,符合轻量化要求,并有效防止热灾害在电池堆积中的传播,提高电池组的热安全性,可广泛应用于汽车、航空航天等多个领域。
本发明提供一种混合动力汽车整车控制器的高低压能量管理方法,以车辆控制器作为主导模块VCU,以包含电池管理系统、直流转换器DC DC、电机控制器、发动机控制单元、铅酸蓄电池和动力电池在内的组件作为关联模块;其中以包含混动策略模块、驱动扭矩决策模块、直流转换器DC DC控制模块、热管理如空调控制模块、通用值的确认如系统约束模块和动力系统控制如扭矩分配管理模块在内的模块作为VCU的能量管理相关功能 模块。本发明采用一种控制高低电池和直流转换器DC DC相互配合的策略,减少铅酸电池的馈电状态,同时优化了动力电池的使用寿命和延长直流转换器DC DC的使用时间,从而降低车辆的使用成本,提高车辆的可靠性。
本实用新型公开的一种工程机械智能散热管理系统,包括控制器以及分别与控制器连接的液压油温度传感器、变矩油温度传感器、动力机冷却水温度传感器、动力机中冷温度传感器、液压油散热风扇组、变矩油散热风散组和动力机散热风扇组,所有散热风扇组的散热风扇均为电驱动风扇。本实用新型可有效提升散热效果,节能减噪,降低成本投入以及提高工程机械智能化水平。
本实用新型涉及一种动力电池的热管理系统,包括电池箱体、设置在电池箱体内的若干电池模块、设置在电池箱体内壁与电池模块之间以及相邻电池模块之间的气囊、控制器。所述气囊的进气口通过进气管路与整车空调的出气口相连,气囊的出气口处安装有风机;所述风机的进气口位于气囊内部,风机的出气口位于气囊外部;所述电池模块上安装有温度传感器,温度传感器的输出端接控制器的输入端,控制器的输出端分别接风机及整车空调的控制端。本实用新型不仅能够提高动力电池使用的安全性,还能够避免电池模块松动,确保电池模块的稳定性,具有性能可靠、安全性高、节约成本等特点。
本实用新型公开了一种电池组热管理系统,能够极大地提高电池组的散热效率,同时能够实时监控电池组的工作状态及温度,并及时进行调整,确保电池组的使用状态良好,提高电池组的使用寿命。在电池组的周围填充内置有硅胶材料制成壁厚仅为0 5 0 8mm的绝热套,能将电池组周围的空隙完全填充提高电池组的散热效率。通过电流传感器和温度传感器进行实时检测,并通过控制装置内的电流监测模块和温度监测模块对电池组进行实时监测,数据处理模块进行统计分析将分析结果以曲线图的形式展现在显示屏上,使得监测者能够第一时间及时进行有效监控调整确保电池组长时间地处于正常工作状态,并能够预防电池组由于过热或者其它不利因素而影响工作效率以及工作寿命。
本实用新型涉及一种纯电动汽车热管理装置,其技术方案为:一种纯电动汽车热管理装置包括超声波雾化器、风机、雾化池、换能器、相变材料、出口管、入口管、换热管、增压泵、PTC加热管、四通阀、电动机入口管、电动机、电动机出口管、电池组入口管、电池组、电机控制器入口管、电机控制器出口管、电机控制器、温度传感器、电池组出口管、控制电路二和控制电路一。该装置根据不同工作情况选择利用超声波雾化器将液态相变材料进行雾化吸热或利用PTC加热管对液态相变材料加热进行热传导预热,来对电动机、电池组和电机控制器进行热管理,从而确保纯电动汽车的稳定运行。本实用新型结构简单实用,自动化程度高,且保证了纯电动汽车热管理时的安全性。