本实用新型涉及一种热泵空调和电池热管理装置,包括空调系统和电池热管理系统,空调系统包括空调箱、外换热器、气液分离器、压缩机,空调箱内设有冷凝器、蒸发器、鼓风机、第一高压PTC,外换热器与冷凝器之间设有制热节流短管,制热节流短管上并联设有第二电磁阀,外换热器与蒸发器之间依次设有第一电磁阀和制冷节流短管;蒸发器与依次通过气液分离器、压缩机与冷凝器连通;气液分离器与外换热器之间设有第三电磁阀;电池热管理系统依次包括电池冷却器、第二高压PTC、电池包、水泵,电池冷却器与第三电磁阀并联;本实用新型可单独对电池、电机和乘员舱进行热管理,使得在进行多项热管理时各个回路之间互不影响,热管理效率高。
本发明公开了一种电动车辆双蒸发器空调控制方法,该方法包括:实时检测车舱蒸发器阀门开启指令、电池蒸发器阀门开启指令、车舱实际温度、电池实际温度;如果检测到所述车舱蒸发器阀门开启指令则开启车舱蒸发器阀门;如果检测到电池蒸发器阀门开启指令,则开启电池蒸发器阀门;上述任一阀门开启后,触发冷凝器风扇运行,并且在确定冷凝器风扇运行后,触发压缩机电机启动,并根据设定的制冷温度及所述车舱实际温度、和 或冷却所需温度及所述电池实际温度,控制所述压缩机电机的运转速度。通过该方法,空调系统既能对车舱进行制冷也能对动力电池进行冷却。相应地,本发明还公开了一种电动车辆双蒸发器空调控制装置。
本实用新型公开了一种电动汽车的热管理系统,其中,包括空调制冷循环装置、空调制热循环装置和用电设备;空调制冷循环装置包括电动压缩机、空调冷凝器、压力开关、空调蒸发器和换热器,其中,换热器的高温侧与空调蒸发器并连;空调制热循环装置包括串连在一起的水加热器、空调水泵和空调加热器芯体;换热器的低温侧与用电设备形成第一制冷回路;水加热器与用电设备形成制热回路。本实用新型提供的电动汽车的热管理系统通过运用空调系统温度控制能力,实现了工作温度宽范围控制,提高了热传递效率,温度控制均匀,准确,并且具备节约能源的功能,能够保证动力电池、电机及控制器、充电机、DCDC等用电设备高效、持续工作。
本实用新型公开了一种实现动力蓄电池热管理的风道结构,包括冷暖风调和管道、电池风门和电池风门电机,冷暖风调和管道的前、后开口端分别与空调出风口和动力蓄电池进风口相通,冷暖风调和管道的管壁上开设有使其与乘员舱相通的乘员舱出风口;电池风门与冷暖风调和管道可相对转动地连接,并将冷暖风调和管道的内腔分割为与空调出风口相通的空调风腔和与乘员舱出风口相通的乘员舱风腔,电池风门电机带动电池风门转动,以调节两腔之间的比例。本实用新型只需将汽车空调装置的一个出风口用作动力蓄电池热管理,并增加电池风门和电池风门电机即可利用空调装置和乘员舱的环境温度将动力蓄电池的温度控制在动力蓄电池的工作温度范围内。
本发明公开了一种混合动力汽车空调系统及其控制方法,包括整车控制器、自动空调控制器、电池、电池控制器、增程器、制冷单元和制热单元。制热单元包括PTC加热器和加热芯体散热器,电池控制器实时检测电池的电量,并将检测结果发送给整车控制器;整车控制器接收自动空调控制器发送的制热请求或制冷请求,并在收到制热请求后,在电池荷电状态SOC值大于增程模式开启的荷电状态SOC_Z值时,开启PTC加热器;在所述电池荷电状态SOC值小于或等于增程模式开启的荷电状态SOC_Z值时,开启加热芯体散热器。本发明通过增加PTC加热器,改变控制方法,使空调系统能够在不同SOC状态下工作,实现了空调舒适性与节油、省电的平衡。
本发明公开了一种动力蓄电池热管理方法及系统,包括:获取动力蓄电池各检测点的温度;在检测到发生任一热管理开启事件时,开启空调装置的热管理模式;之后,获取空调出风口的温度和乘员舱的环境温度;在检测到动力蓄电池进风口的温度与热管理模式的目标温度不一致时:如果动力蓄电池进风口的温度低于所述目标温度,则使空调出风口的电池风门旋转至使动力蓄电池进风口对于乘员舱和空调出风口中的暖风侧的开度较大的位置;反之则使空调出风口的电池风门旋转至使动力蓄电池进风口对于乘员舱和空调出风口中的冷风侧的开度较大的位置。本发明可利用汽车空调装置实现动力蓄电池和乘员舱的温度控制。