车辆用热管理装置具有多个热介质回路(11、12、13、14)、储存罐(47)以及连通部(51A、51B、51C、51D、52A、52B、52C、52D、41、42、43、44、45)。在多个热介质回路的内部,热介质彼此独立地循环。储存罐对混入到热介质中的气泡进行分离。连通部使储存罐与多个热介质回路中的任意的热介质回路连通。由此,在具有多个热介质回路的车辆用热管理装置中,抑制在由储存罐进行排气时产生热损失的情况。
本实用新型具有分时冷却及加热功能的层叠式组合换热器,由冷却器芯体和加热器芯体经支架构成层叠式换热器,在冷却器芯体上盖板上连接热力膨胀阀、制冷剂进出口一体管和低温冷却液进口管;在加热器芯体上盖板上连接低温冷却液出口管、高温冷却液进口管和高温冷却液出口管;冷却器芯体主要由换热叠片及换向导流管组成,加热器芯体主要由换热叠片组成;采用低温冷却液为第一换热介质、制冷剂为第二换热介质,高温冷却液为第三换热介质;冷却时冷却器工作,加热器不工作;加热时加热器工作,冷却器不工作;换热介质的流程分有单流程及多流程结构。本实用新型进行了优化集成,结构紧凑、工作可靠、制造成本低;能在新能源汽车领域进行规模化应用。
本发明能为新能源汽车充电电池提供预热和冷却的充电站,含有工作室、配电系统、充电机、热管理系统、监控系统、安全防护设施和充电单元,可根据需求和设计规模设置若干个充电机和充电单元并由热管理系统对所述充电机和充电单元进行管控;所述热管理系统包括回路Ⅰ和回路Ⅱ,具有四种工作模式:⑴充电单元和工作室内均需大冷量冷却模式;⑵充电单元单独大冷量冷却模式;⑶充电单元单独少冷量冷却模式;⑷充电单元和工作室内加热模式;本发明不仅能为充电站本身提供制冷或供热,还能为新能源汽车的充电电池在充电之前提供冷量或预热,从而能降低新能源汽车整车的热管理成本,有利于节约能源、促进新能源汽车的发展,对社会发展具有积极意义。
本发明新能源客车综合热管理系统,含有空调机组模块、废热利用模块和热管理模块,所述空调机组模块含有制冷和制热两个循环;空调机组模块的工质为第一工质,采用可燃制冷剂;废热利用模块采用第二工质、热管理模块采用第三工质——不可燃且防冻防锈的载冷剂;所述废热利用模块为空调机组模块提供冷源和热源,所述空调机组模块为热管理模块提供冷源和热源;本发明提供了一种新能源客车综合热管理系统,既能充分整合和合理利用新能源客车空调、动力电池、电机废热或其他废热的能量,又能使用环保制冷剂,能消除制冷剂发生燃烧或爆炸的潜在危险,提高新能源客车整车的能源利用效率,便于制造企业生产并在新能源客车上应用。
本发明属于热管理技术领域,公开了一种热管理系统和包含该热管理系统的汽车。热管理系统包括第一循环回路、第二循环回路、第三循环回路和第四循环回路,其中,第一循环回路包括压缩机、换热器和吸热组件,吸热组件包括并联设置的第一支路和第二支路,第一支路包括串联的第一电子膨胀阀和蒸发器,第二支路包括串联的第二电子膨胀阀和冷却器的冷介质通道;第二循环支路包括压缩机、第一冷凝器的热介质通道、第三电子膨胀阀和换热器;第三循环回路包括第一冷凝器的冷介质通道、第一加热器、第二加热器的热介质通道和第一泵;第四循环回路包括冷却器的热介质通道、电池包和第二泵。本发明的热管理系统,集成度高,能效比高且结构紧凑。
本发明新能源客车车厢和电池集中热管理系统,含有空调系统各结构以及水泵、膨胀水箱、电池箱、散热器、加热器、换热器和车外散热器,其中,空调系统采用制冷剂进行循环,热管理系统采用防锈防冻液作为循环液,电池箱用于与电池进行热交换;车厢散热器用于与车厢内空气进行热交换;换热器用于与可以是多种来源的外界冷源或热源进行热交换,车外散热器用于与环境空气进行热交换;本发明具有电池冷却模式、电池加热模式和车厢制热模式,具有集中热管理的优化结构、底部供热及乘坐舒适的优点,形成了适用于新能源客车的车厢和电池集中热管理系统,能实现整车能源合理的综合利用,最大化节能降耗,对新能源客车的发展具有积极的促进作用。
本发明新能源车用集成乘员舱空调及电池包热管理热泵系统,含有电动压缩机、水冷冷凝器、电子膨胀阀、电磁阀、室外换热器、液气分离器、电磁膨胀阀、车内蒸发器、水暖式车内暖风芯体、5KW水暖式电加热器、电子水泵、复合换热器和电池包,能形成乘员舱制冷和电池冷却模式的制冷剂侧回路、电池冷却液侧回路及乘员舱制热和电池加热模式的制冷剂侧回路、乘员舱制热的冷却液侧回路及一系列单独的制冷或制热回路;使新能源汽车能满足各种标准规定的各种环境温度下乘员舱制冷、制热和除湿以及电池包冷却和加热的要求,还具有电池包预加热和乘员舱预热预冷的功能,解决了乘员舱和电池包的热管理问题,有助于我国新能源汽车的发展。
本发明一种适宜于可燃工质的新能源客车综合热管理系统,含有空调机组模块和热管理模块,所述空调机组模块含有制冷和制热两个循环;空调机组模块的工质为第一工质,采用可燃制冷剂;热管理模块采用第二工质——不可燃且防冻防锈的载冷剂;由环境工质为空调机组模块提供冷源和热源,由空调机组模块为热管理模块提供冷源和热源;本发明提供了一种新能源客车综合热管理系统,既能充分整合和合理利用新能源客车空调、动力电池、电机废热或其他废热的能量,又能使用环保制冷剂,能消除制冷剂发生燃烧或爆炸的潜在危险,提高新能源客车整车的能源利用效率,便于制造企业生产并在新能源客车上应用。
本公开涉及一种在快速充电期间用于在冷却电池的同时加热车舱的方法。公开了一种车辆的热管理系统。车辆包括电池冷却剂系统,该电池冷却剂系统包括限定热容量的冷却器和被布置为将流体选择性地引导到冷却器的电子膨胀阀。所述系统包括加热器芯系统,该加热器芯系统包括外部换热器和被布置为将流体引导到外部换热器的加热膨胀阀。车辆还包括控制器,该控制器被配置为:响应于电池充电速率超过阈值而打开电池膨胀阀,并响应于电池冷却器的容量不足以达到由加热器芯温度自动调节器限定的温度阈值而打开加热膨胀阀。
本发明适宜于可燃工质的新能源客车综合热管理系统,含有空调机组模块、废热利用模块和热管理模块,所述空调机组模块含有制冷和制热两个循环;空调机组模块的工质为第一工质,采用可燃制冷剂;废热利用模块采用第二工质、热管理模块采用第三工质——不可燃且防冻防锈的载冷剂;所述废热利用模块为空调机组模块提供冷源和热源,所述空调机组模块为热管理模块提供冷源和热源;本发明提供了一种新能源客车综合热管理系统,既能充分整合和合理利用新能源客车空调、动力电池、电机废热或其他废热的能量,又能使用环保制冷剂,能消除制冷剂发生燃烧或爆炸的潜在危险,提高新能源客车整车的能源利用效率,便于制造企业生产并在新能源客车上应用。
制冷循环装置具有:高压侧热交换器(15),该高压侧热交换器(15)使从压缩机(22)排出的高压的制冷剂与热介质进行热交换;低压侧热交换器(14),该低压侧热交换器(14)使减压后的低压的制冷剂与热介质进行热交换;车载设备(81A、81B、81C),该车载设备(81A、81B、81C)供热介质循环,向热介质供给热量;热介质空气热交换器(13),该热介质空气热交换器(13)使热介质与空气进行热交换;切换部(18、19),该切换部(18、19)对于车载设备切换如下状态:使热介质在车载设备与高压侧热交换器之间循环的状态、使热介质在车载设备与低压侧热交换器之间循环的状态,该切换部(18、19)对于热介质空气热交换器切换如下状态:使热介质在热介质空气热交换器与高压侧热交换器之间循环的状态、使热介质在热介质空气热交换器与低压侧热交换器之间循环的状态;以及控制部(60),该控制部(60)在判定为需要对热介质空气热交换器进行除霜的情况下,控制切换部的动作以成为除霜模式,并且使压缩机驱动,除霜模式使热介质在低压侧热交换器与车载设备之间循环并且使热介质在高压侧热交换器与热介质空气热交换器之间循环。
本发明涉及一种恒温散热器阀(TRV),所述TRV包括: 通信链路,去向房间(9)中一个或多个其它TRV; 输入接口,所述输入接口被配置为允许用户输入所定义的温度设定点(T1)或从所述一个或多个其它TRV获取所述所定义的温度设定点(T1);其中,所述TRV还被配置为将所述所定义的温度设定点(T1)与在同步列表中定义的所述一个或多个其它TRV进行同步。