本发明提供了一种具有热管理系统的锂离子电池包装置,包括:电池箱体1、采样模块2、电池总成模块3、加热单元4、第一填充单元5、液冷组件6、第二填充单元7、支撑框8、箱体密封单元9以及高压母线10;所述采样模块2竖直设置于具有热管理系统的锂离子电池包装置内部的一端;所述电池总成模块3设置于具有热管理系统的锂离子电池包装置的中部;所述高压母线10分布于具有热管理系统的锂离子电池包装置的侧面;所述采样模块2能够采集到电池电压信息、电池温度信息。本发明既降低了电池包内部热量与外部交换,也使热量尽可能通过液冷进行降温,提高了散热效果,同时增强了整个电池箱的结构强度。
本发明涉及一种相变热管理构件的成型方法及成型得到的相变热管理构件。所述方法包括步骤有:原料预混:将相变材料、导热填料、树脂基材料和阻燃剂混合均匀,得到混合料;挤出造粒:将得到的混合料进行挤出造粒处理,得到相变热管理粒料;和干燥及成型:将得到的相变热管理粒料依次进行干燥和注塑成型处理,得到相变热管理构件。本发明可制得尺寸精度高、绝缘性好的热管理构件以及实现构件的批量化生产。本发明成型的构件具有高热导率、良好的控温效果,能将动力电池的温度控制在最佳工作范围内,提高动力电池电池组的整体寿命与安全性。
本发明涉及汽车热管理技术领域,公开了一种汽车热管理系统及方法。该系统应用于搭载有发动机的燃油车,包括:发动机排气管路、发动机废气余热回收水路和热泵空调循环回路;发动机排气管路,用于在燃油车处于冷启动过程,或者制热模式时,控制发动机排出的废气进入发动机废气余热回收水路;发动机废气余热回收水路,用于回收废气的热量,并与热泵空调循环回路进行换热;热泵空调循环回路,用于从外界空气和废气余热回收水路中吸收热量,为燃油车的乘员舱和发动机冷却系统供暖,或者仅为燃油车的乘员舱供暖。通过上述方式,解决了现有技术中寒冷地区空调制热效果差和汽车低温冷启动水温上升慢,并且不够节能环保的技术问题。
本发明公开了一种燃料电池系统及其热管理方法,该系统包括第一循环液路和第二循环液路,控制器用于根据第一温度传感器检测的温度信息控制第一或第二循环液路工作;该热管理方法包括,利用控制器判断电解液实时温度是否在最佳温度范围内:如果是,通过控制器控制第一、第二换向阀,从而令第二循环液路工作;如果否,则通过控制器控制第一、第二换向阀,从而令第一循环液路工作,如果实时温度高于第一阈值,则利用蓄能加热装置吸收循环液热量,如果实时温度低于第二阈值,则利用蓄能加热装置加热循环液。基于双循环液路结构设计,本发明有效解决燃料电池系统的运行散热、低温运行及低温启动问题,具有可靠性强、能源利用率高、成本低等优点。
本发明公开了一种电驱动系统的热管理系统测试平台,包括水泵、电子控制单元、流量控制模块、上位机、过滤器、热交换器、加热器、温度控制模块、电机、电机控制器、测功机、第一三通电子阀、第二三通电子阀、第一阀门、第三阀门,水泵、加热器、所述热交换器依次循环连接,电机控制器与水泵、电机和上位机连接,第三阀门用于调节进入测试平台的冷却液的压力大小,上位机用于设定冷却液压力、温度、流量的目标值,冷却液从第一阀门进入测试平台,热交换器、温度控制模块、第一三通电子阀、以及第二三通电子阀共同实现温度控制。本发明能够解决现有技术无法全面地对电驱动热管理系统在变工况(不同压力、温度、流量)条件下性能的测试。
本实用新型公开了一种车辆的热管理系统和具有其的车辆,该车辆的热管理系统包括:电池支路;冷却支路;传动支路;散热支路;加热支路,电池支路、冷却支路、传动支路和散热支路连通为第一换热回路,加热支路连通为第二换热回路;第一换向阀,第一换向阀具有第一状态和第二状态,在第一状态时第一换向阀隔断第一换热回路与第二换热回路,在第二状态时第一换向阀连通第一换热回路与第二换热回路。本实用新型实施例的车辆的热管理系统,通过设置散热支路、冷却支路和加热支路,可以在高温时对电池组件进行冷却,在低温时对电池组件进行加热,便于控制电池组件的工作温度,提高电池组件的工作可靠性,降低车辆的行驶能耗。
本实用新型公开了一种车辆的热管理系统和具有其的车辆,该车辆的热管理系统包括:电池支路;冷却支路;传动支路;散热支路;第一换向阀,具有第一状态和第二状态,在第一状态时第一换向阀连通电池支路与传动支路,且隔断电池支路与冷却支路,在第二状态时第一换向阀连通电池支路与冷却支路,且隔断电池支路与传动支路。本实用新型实施例的车辆的热管理系统,通过设置散热支路和冷却支路,可以在高温时对电池组件进行冷却,便于控制电池组件的工作温度,提高电池组件的工作可靠性,降低车辆的行驶能耗。
本实用新型提供了一种比例阀及汽车热管理系统,涉及流体介质控制阀技术领域,主要目的是现有技术中存在的比例阀在调节过程中容易损坏的技术问题。该比例阀包括内设腔体的阀体和阀芯组件,所述阀体为柱状结构,其相对设置的两端分别设置有第一接口和封盖,其侧壁上沿轴线方向依次设置有第二接口和第三接口;所述第二接口和所述第三接口之间设置有一朝向轴线方向凸起的台阶孔;所述阀芯组件包括阀座和沿轴线方向设置在所述阀座两侧的两个换向节,所述阀芯组件沿轴线方向滑动移动;当所述阀座与所述台阶孔抵接时,所述换向节与所述封盖之间存在一间隙。由于台阶孔的存在,可以有效限制阀芯组件的移动范围,避免比例阀损坏。
本申请提供一种燃料电池汽车多环境综合热管理方法,可实现对不同环境温度采用不同的控制模式。在常温环境模式下,即第一控制模式下,通过前馈控制和反馈控制方法,可以确保温度控制的精确性和稳定性。在第二控制模式下,且高温环境模式下,采用动力系统协同控制,降低燃料电池工作电流,提高燃料电池效率,以减少燃料电池系统产热,解决了高温环境下冷却系统散热压力大的问题。在第二控制模式下,且低温环境模式充分利用燃料电池系统余热,在保证燃料电池系统和车厢内温度的同时,降低了整车能量消耗。从而,在面对一年四季复杂多变的环境下,可以保证燃料电池系统温度控制的精确性和稳定性,并且大大降低整车的能耗,提高整车的经济性,增加续驶里程。
本实用新型公开了一种车辆的热管理系统和具有其的车辆,该车辆的热管理系统包括:电池支路,电池支路连接有冷却器组件;传动支路;与散热组件热连通的散热支路;加热支路,电池支路、传动支路和散热支路连通为第一换热回路,加热支路连通为第二换热回路;第一换向阀,第一换向阀具有第一状态和第二状态,在第一状态时第一换向阀隔断第一换热回路与第二换热回路,在第二状态时第一换向阀连通第一换热回路与第二换热回路。本实用新型实施例的车辆的热管理系统,通过设置散热支路、加热支路和冷却器组件,可以在高温时对电池组件进行冷却,在低温时对电池组件进行加热,便于控制电池组件的工作温度。
本实用新型公开了一种车辆的热管理系统和车辆,该车辆的热管理系统包括:与电池组件热连通的电池支路;与传动及控制组件热连通的传动支路;与散热组件热连通的散热支路;与加热组件连通的加热支路,电池支路、传动支路和散热支路连通为第一换热回路,加热支路连通为第二换热回路;第一换向阀,处于第一状态时第一换向阀隔断第一换热回路与第二换热回路,处于第二状态时第一换向阀连通第一换热回路与第二换热回路。本实用新型实施例的车辆的热管理系统,通过设置散热支路和加热支路,可以在高温时对电池组件进行冷却,在低温时对电池组件进行加热,便于控制电池组件的工作温度,提高电池组件的工作可靠性,降低车辆的行驶能耗。
本实用新型涉及一种锂离子电池组热管理系统,包括散热铝板、散热铝管、控制器、水泵、加热制冷装置、温度传感器;相邻散热铝板之间固定一组电池组,散热铝板一侧设若干安装槽孔,用于定位和放置散热铝管;散热铝管折弯成S形,一根散热铝管对应安装于多个散热铝板同一高度处的安装槽孔内;散热铝管的一端为进液口、另一端为出液口;电池组外侧对应散热铝管数量少于电池组内侧对应散热铝管数量;温度传感器分别设置于散热铝管进液口和出液口附近电池表面,将温度信号反馈给控制器;控制器通过驱动加热制冷装置来调节流体温度,通过驱动水泵将流体输送至各个进液口。本实用新型能够实现温度控制的同时,有效保证电池组温度分布的一致性。