本发明提供了一种电动汽车热管理系统,其包括具有依次串接的压缩机、液式冷凝器、热力膨胀阀和液式蒸发器的热泵机组,具有冷风芯体及暖风芯体的空调换热组件,具有构成与电池中的电池芯体热交换的电池换热器组成的电池换热组件,具有散热器的散热组件和具有冷水泵、热水泵以及散热水泵的水泵组件;还包括构成以上各组件之间连接的管路组件,以及具有分别设置于以上各组件之间的所述管路组件上的若干阀体的控制阀组件。本发明所述的电动汽车热管理系统可提升电池加热或冷却的稳定性,并且相较于采用电池独立电加热和风冷或液冷的形式,也可降低电池热管理的成本。
本实用新型公开了一种车辆的热管理系统和具有其的车辆,该车辆的热管理系统包括:电池支路;冷却支路;传动支路;散热支路;第一通断阀和第三通断阀,在第一通断阀处于第一导通状态且第三通断阀处于第三隔断状态时,第一通断阀连通散热支路与电池支路,且第三通断阀隔断冷却支路与电池支路;在第一通断阀处于第一隔断状态且第三通断阀处于第三导通状态时,第一通断阀断开散热支路与电池支路之间形成的回路,且第三通断阀连通冷却支路与电池支路。本实用新型实施例的车辆的热管理系统,通过设置散热支路和冷却支路,可以在高温时对电池组件进行冷却,便于控制电池组件的工作温度,提高电池组件的工作可靠性,降低车辆的行驶能耗。
一种集相变与液冷耦合传热的动力电池热管理装置,包括电池包箱体(1)、可转动式挡风板(3)、散 加热装置箱体(4)、风扇(5)、散热翅片(6)、回流式水管(7)、加热器(8)、水泵(9)和电池单体。电池包箱体内置电池单体和扁平状热管;扁平状热管的冷凝端伸入电池包箱体内;散 加热装置箱体与回流式水管、水泵、加热器串联组成循环通道。本发明采用相变与液冷相结合的方式,扁平状热管通过回流式水管将热量带走,再通过散热翅片和风扇对冷却介质进行循环散热,极大地提高了散热效率。利用加热器及热管的双向导热特性可提高电池包低温时的加热效率。硅胶保护套在电池包箱体受到外力撞击时起防撞减震作用,提高了电池包的安全性。
本发明涉及一种车载电池防火热源管理同步装置及使用方法,包括储液器、储液器控制阀、灭火管路、喷头或喷孔、灭火管路控制阀、感应探头、进水连接管和出水连接管,换热管路、进水连接管、车载电池组模块和出水连接管之间形成密封循环流道,储液器内存储有灭火换热液,储液器控制阀、灭火管路控制阀和感应探头均与控制热源管理系统和车载电池组模块的车载电脑连接,受车载电脑同步控制。本发明巧妙的通过与现有车载电池热管理系统相结合,在保持现有车载电池热管理系统正常运行的情况下,去掉了的电池模组的专业灭火设备,提高了提高了资源的整合度,简化了整车的结构布局,还有利于整车的轻量化要求,节省了成本,提高了整车的工作里程。
本发明提供一种锂离子电池组热管理装置,包括:电池组,与导热组件紧密接触并固定连接;导热组件,包括导热固定支架和导热滑动支架;导热固定支架上设有键槽,导热滑动支架上设有与键槽配合连接的键;导热固定支架与导热滑动支架之间设有间隙;导热固定支架中部设有通孔Ⅰ;导热滑动支架中部设有通孔Ⅱ和线槽;驱动组件,包括压缩弹簧、不锈钢丝和形状记忆合金丝,不锈钢丝的两端分别与形状记忆合金丝的两端相连构成闭环;散热冷板,内部设有冷却流体管道。本发明利用形状记忆合金丝和压缩弹簧被动地控制高温电池单体的散热,在降低电池组温度的同时,简单有效地将电池组的温差控制在合理范围内,改善电池组的温度一致性。
本发明涉及热仿真设计领域,具体涉及一种用于雷达电子机柜系统的热设计方法。本方法包括以下步骤:选择散热方式;得到机柜与外界空气的传热量和辐射换热量;求解机柜整体散热所需风量;计算总压降;选择具体的散热部件;建立雷达电子机柜系统的三维模型;建立三维网格化的计算域;对雷达电子机柜系统进行仿真计算,得到初始仿真结果;建立温度分布的等高线云图以及流体的流动迹线,对不符合工作要求的机柜内部的结构及布局进行改进或者重新选择散热方式。本发明可以准确的模拟预测雷达电子机柜系统在使用过程中的温度分布和流体流动状况,从而实现对机柜内电子设备的布局以及散热方式的优化改良功能。
本发明公开了一种发动机热管理系统,其包括:发动机进气管、发动机进气总管、中冷器和增压器压气机,发动机热管理系统还包括:控制进气温度旁通管路,其两端分别连接中冷器入口和中冷器出口,且与中冷器并联,控制进气温度旁通管路上设置有第一旁通比例阀,通过调节第一旁通比例阀的位置比例实现不同流量的中冷前进气流量旁通;控制进气量旁通管路,其两端分别连接压气机入口和压气机出口,且与增压器压气机并联,控制进气量旁通管路上设置有第二旁通比例阀,通过调节第二旁通比例阀的开度实现不同工况的进气流量需求;以及温度传感器,其设置于发动机进气总管的管路上,用于测量进入发动机进气总管的进气温度,ECU能够采集进气温度的测量值。
本发明公开了一种电动汽车热管理系统及电动汽车,电动汽车热管理系统包括电驱温度控制系统、电池温度控制系统和空调系统。电驱温度控制系统、电池温度控制系统和空调系统均与汽车的整车控制器通信连接,整车控制器控制电驱温度控制系统、电池温度控制系统和空调系统的工作状态。其中,通过整车控制器同时控制电驱温度控制系统、电池温度控制系统和空调系统的工作状态,相比于电驱温度控制系统、电池温度控制系统和空调系统设置单独的控制器来进行控制,能够提高电动汽车热管理系统的能量利用效率,以及降低电动汽车热管理系统的制造成本,进而能够降低电动汽车的制造成本。
本实用新型提出一种应用新型仿生植物超亲水特性热管阵列制备的复合型电池热管理装置。其中设计了不同尺寸的L型热管和I型热管组成仿生热管集,仿生热管集与电池进行固-固接触换热,仿生热管集与底部的蒸发冷板直接接触,实现了电池与蒸发冷板的热量传递。本实用新型方法克服了以往重力型热管受重力影响冷端的液体不能依靠毛细力上升至热端导致热管内部无法实现热力循环和冷热端自适应调节,扩大了热管的应用范围和使用工况,并极大地提升了电池组高温环境及严苛工况下的高效冷却能力,保障电动汽车电池组最佳工作温度、功率输出、循环寿命以及热安全性。
本实用新型涉及一种具有电池热管理功能的热泵汽车空调,包括空调箱、外换热器、气液分离器、压缩机,空调箱内设有冷凝器、蒸发器、鼓风机、第一高压PTC,外换热器与冷凝器之间设有制热节流短管,制热节流短管上并联设有第二电磁阀,外换热器与蒸发器之间依次设有第一电磁阀和制冷节流短管;蒸发器与依次通过气液分离器、压缩机与冷凝器连通;气液分离器与外换热器之间设有第三电磁阀;电池热管理系统包括电池冷却器,电池冷却器与第三电磁阀并联;制热节流短管与外换热器之间并联设有第四电磁阀;本实用新型较好地解决热泵型电动汽车空调低温工况运行时压缩机的排气温度过高、制热量明显不足、车外低温热源换热器表面除霜困难等难题。
本发明公开了一种热泵空调与电池热管理控制方法,步骤包括:获取电池温度,根据电池温度判断得出第一索引值,并由第一索引值和电池影响因子共同确定出电池的第一响应需求;获取乘员舱温度,根据乘员舱温度判断得出第二索引值,并由第二索引值和乘员舱影响因子共同确定出乘员舱的第二响应需求;通过查询预设的响应需求组合表,选择与第一响应需求和第二响应需求相匹配的热管理模式,并执行工作。本发明囊括了乘员舱热管理与电池热管理,有利于在设备上较少冗余零部件、降低成本;可以满足乘员舱与动力电池对于环境影响因子参变量的不同需求,实现冷量的合理准确分配;另外,该方法简明清晰,通用性强,移植更复杂或简化系统,验证效果良好。
本实用新型涉及电动汽车热量管理技术领域,提供了一种动力电池热管理控制系统及方法,该系统包括:依次通过管路连接的热交换器、加热器、电子水泵M1及动力电池包,动力电池包的输出管路通过三通阀Y2与热交换器或发动机的输入管路连接,发动机的输出管路通过三通阀Y3与散热风扇或三通阀Y1的输入管路连接,散热风扇的输出管路与三通阀Y1的输入管路连接,三通阀Y1的输出管路与电子水泵M1或电子水泵M2的输入管路连接,电子水泵M2的输出管路与发动机的输入管路连接。动力电池热管理系统包括内循环及外循环,可以选择内循环或外循环对动力电池包进行不同程度加热或冷却,能更为精准的调控动力电池包的温度。