一种方形 软包电池的复合冷却 加热方法涉及电池的热管理领域。针对方形 软包电池设计了一种符合国内电动汽车(纯电动汽车、混合动力汽车)的热管理成组方法。本方法复合微通道液冷与相变材料两种冷却方式,微通道与相变材料在复合冷却冷板内相间分布,通过微通道内的传热介质和相变材料的复合作用实现对电池的冷却 加热。该方法易于根据热管理设计需求调整冷却方式,从而增强传热介质与电池的换热效果,延长电池系统的寿命,并能提高电池系统的安全性。
一种用于飞行器(10)的推进系统(300)包括电推进发动机。所述电推进发动机包括电动马达(334)、以及可围绕所述电推进发动机的中心轴线(302)由所述电动马达旋转的风扇(304)。所述电推进发动机还包括支撑所述风扇旋转的轴承(340)、以及热管理系统。所述热管理系统包括润滑油循环组件和热连接至所述润滑油循环组件上的热交换器(356)。所述润滑油循环组件被配置用于对所述轴承提供润滑油。
本发明公开一种基于房车 户用风-光-电互补储能系统的热管理方法,包括制冷剂循环、冷却液循环、液体加热循环;冷却液循环包括风力发电机冷却液循环、光伏组件冷却液循环、储能电池包冷却液循环、房车 户用冷却液循环;液体加热循环包括储能电池包液体加热循环、房车 户用液体加热循环;所述热管理方法,将风力发电机、光伏组件、储能电池包、房车 户用内部空间环境温度设置规定值,在超出或者低于设定值时启动或者停止设备运行;所述热管理方法包括三个大的工作模式:仅制冷工作模式、仅加热工作模式、制冷与加热同时工作模式;上述热管理方法,全部使用液体方式换热,使得房车 户用风-光-电互补储能系统使用寿命延长,节能环保。
本发明涉及一种用于LED照明灯的热管理系统,包括离子风发生装置、电加热装置和LED照明装置;所述离子风发生装置设有进风口和出风口;所述电加热装置处于所述出风口的后侧,其通过加热电路连接外部电源并获得转换成热能的电能;所述LED照明装置处于所述电加热装置的后侧;在所述LED照明装置上设有实时监测所述LED照明装置的温度的温度传感器,在所述加热电路上设有根据所述温度传感器的监测结果来调节所述加热电路的电压,进而改变所述电加热装置输出的热能的温度控制器。该系统有效解决离子风发生装置在低温环境下缺少升温功能的问题,在不同情况下进行系统工作状态的切换,实现了对LED照明装置的热管理,提高了LED照明灯的寿命和可靠性。
本发明提出了一种燃料电池汽车综合热管理方法及其快速控制原型的实现方法,综合热管理以热泵为核心,集成了燃料电池热管理、辅助能源热管理、电机及功率电子热管理、乘员舱热管理,通过综合控制单元进行协调控制。快速控制原型系统包括上位机、快速控制原型机和被控对象;上位机主要实现的功能是系统数学模型的架构及仿真验证、自动生成代码、硬件在环仿真、参数标定与实时监控;快速控制原型机包括软件平台和硬件平台,软件平台包括底层驱动函数和任务执行框架,硬件平台包括信号调理器和数据采集卡;被控对象是整车或试验台架中的目标系统。本发明使燃料电池汽车综合热管理控制的开发得到最大程度的简化,提高了开发效率。
本发明公开了一种电池模组及具有其的车辆。所述电池模组包括:电池固定支架、串联汇流排、轴向导热结构、均温导热垫和换热板,电池固定支架上设置有多个圆柱形电芯;串联汇流排设置在电池固定支架的一侧,串联汇流排用于将多个圆柱形电芯串联连接,串联汇流排相对圆柱形电芯的端面向外突出以在圆柱形电芯的端面与串联汇流排之间形成凹槽;轴向导热结构设置在凹槽内;均温导热垫贴设在串联汇流排上且与多个轴向导热结构贴合;以及换热板与均温导热垫贴合设置。根据本发明的电池模组,可实现电芯温度的高效均衡热管理。
本实用新型公开了一种LED的热管理装置及系统,包括:用于检测LED的工作温度的温度检测电路;用于根据输入的PWM信号输出对应的驱动电流以驱动LED工作的驱动电路;输入端与温度传感器连接、输出端与驱动电路的控制端连接的控制器,用于根据预设温度占空比对应关系输出与工作温度对应的PWM信号,以便于驱动电路驱动LED工作在安全温度范围,其中,较高的工作温度对应的占空比小于较低的工作温度对应的占空比;用于为控制器及驱动电路供电的电源模块。可见,本申请自动控制LED的工作温度使其工作在安全温度范围,降低了光输出的损失率,尽可能维持了材料的自身性能,从而延长了LED的流明维持率,且修正了LED的色温偏移。
本发明提出了一种电动汽车综合热管理系统与方法,包括压缩机、四通换向阀、车外换热器、双向电子膨胀阀、车内换热器、PTC辅助加热装置和储液干燥器组成的热泵循环,以及电池包循环和电机及其控制系统循环。电池包循环包括电池包换热器、电池包循环泵、温度传感器和电池包,电机及其控制系统循环包括电机及其控制系统换热器(间接式循环中)、电机及其控制系统循环泵、电机及其控制系统温度传感器、电机、电机控制器、DC DC模块、充电装置及其附件。本发明实现工质的能量梯次利用,根据系统中各部分所要求的不同控制温度,在设计时确定工质流经各循环的先后顺序,同时也可以对某一循环进行单独控制。在制热工况下高效节能,有效增加电动汽车的续航里程。
本发明公开了一种户外电池热管理的系统,包括控制器、半导体制冷器、半导体制热器、箱体和相变材料。本发明结构简单,成本低,基于锂离子电池发热量不均匀、温度差异较大的现象,采用分区域热管理的方法,将相变材料和液体冷却相结合,主被动结合,同时具备散热、加热和保温功能,实现了对方型锂离子电池组内温度的精确控制,在低温条件下对电池有效加热,使电池组工作在适宜的温度下,保证电池组正常工作;能够有效提高电池安全性、延长电池使用寿命;保证电池热管理系统长期高效的运行,同时提高了热管理系统的经济性。
一种微通道扁管与相变材料复合的电池成组方法涉及电池的热管理领域。针对方形 软包电池设计了一种符合国内电动汽车(纯电动汽车、混合动力汽车)方形 软包电池的热管理成组方法。本方法将微通道扁管贴合在单片或单排、并列两片或双排电池的两侧,微通道扁管未贴合的部分布置固 固相变材料,通过微通道扁管内的传热介质和固 固相变材料的复合作用实现对电池的冷却 加热。该方法易于根据热管理设计需求调整冷却方式,从而增强传热介质与电池的换热效果,延长电池系统的寿命,并能提高电池系统的安全性。
本发明公开了一种基于相变微胶囊悬浮液的锂离子电池组热管理的系统和方法。该系统包括箱体和设置于箱体内并排竖直放置的方型锂离子电池单体组成的锂离子电池组,锂离子电池组一侧设有液体入口管,另一侧设有液体出口管,箱体内还设置有微通道金属板,微通道金属板和锂离子电池单体间隔竖直排列,锂离子电池组内设置有温度传感器,箱体外部设置有控制器、水泵、加热器、散热器和制冷器。本发明利用了相变微胶囊悬浮液相变潜热大、微胶囊相变过程温度恒定、悬浮液在水泵的作用下可以对流换热的特点,将相变微胶囊悬浮液用于电池热管理,主、被动热管理相结合,兼具加热和冷却功能,实现了对锂离子电池组内温度的精确控制。
液体冷却 加热和翅片传热复合的形电池成组方法涉及电池的热管理领域。针对圆柱形电池设计了一种符合国内电动汽车液体冷却 加热和翅片传热的复合成组方法。本方法将翅片按照电池排列方式和冷却管布置方式开孔。通过翅片上的安装孔在电池和换热管上布置一定数量的翅片,冷却电池时可以在翅片的间隙填充一定量相变材料。本方法通过翅片增大了换热面积利用管内的液体对电池进行冷却或加热。该方法易于根据热管理设计需求调整翅片的数量和间距以及相变材料的用量,增加了电池与换热管间的换热面积,从而增强液体与电池的换热效果,提高了电池温度的均匀性,延长电池系统的寿命。液体与电池通过翅片实现间接式换热,能够提高电池系统的安全性。