公开了具有改变或定制着色的外表面的热管理和 或EMI(电磁干扰)减轻材料的示例性实施方式。本文所公开的热管理和 或EMI减轻材料可包括热界面材料(例如,导热垫或填隙料、导热介电材料等)、EMI屏蔽材料(例如,EMI抑制材料、导电绝热体、EMI吸收体等)、微波吸收体(例如,微波吸收弹性体、微波吸收泡沫、EMI RF 微波吸收体等)、其组合等。本文所公开的热管理和 或EMI减轻材料可包括组合热管理和EMI减轻材料,例如混合热 EMI吸收体、导热微波吸收体、可用于EMI减轻的混合吸收体 热管理材料、组合热界面和EMI屏蔽材料(例如,导热和导电材料、导热和EMI屏蔽 吸收材料等)等。
这里示出和描述了包括这种热管理组件的发光二极管组件。该发光二极管组件可以包括与散热器热接触的发光二极管。散热器可以包括芯体和 或翅片。芯体和 或翅片包括热解石墨材料。包括芯体和 或翅片的热管理组件可以消散来自发光二极管的热量。
一种示例性母线总成包括第一层和第二层,该第二层具有接触第一层的部分、和与第一层间隔开以在第一层和第二层之间提供开口的部分。一种示例性管理热能的方法包括在母线的第一区域中使第一层和第二层接触,并且在母线的第二区域中将第一层和第二层分离以在第一层和第二层之间提供开口。
本公开涉及用于电力电子模块和电池的组合冷却回路的操作。一种用于车辆的热管理系统包括被引导通过牵引电池、电池冷却器、电力电子装置和散热器的冷却剂回路。所述系统还包括位于冷却剂回路中的电池旁通阀,所述电池旁通阀被配置为:当位于旁通位置时,使冷却剂绕过牵引电池和电池冷却器。所述系统包括控制器,所述控制器被配置为:响应于车厢制冷需求大于预定需求,对电池旁通阀进行操作,以使得电池旁通阀位于旁通位置。
提供一种用于电子器件的热管理的系统。所述系统包括电子器件、散热器、以及介于电子器件和散热器之间的导热和电绝缘热桥。热桥将电子器件热联接到散热器且将电子器件与散热器电绝缘。电子器件、散热器、和热桥安装在印刷电路板的相同平坦表面上。
本发明提供一种车辆的热管理和过滤系统。热管理系统包括用于调节电池温度的热环路。过滤器位于电池的上游以过滤液体冷却剂。热管理系统还包括与电池热环路流体连通的第二热环路。第二热环路对除了电池之外的车辆系统进行热控制。电池热环路包括多个电池单体。多个换热器翅片位于各个电池单体之间,以提供冷却剂来调节电池温度。过滤器具有基于翅片的过滤器特性的过滤传递函数。
一种层叠封装(PoP)器件,包括:第一封装;第二封装;以及双向热电冷却器(TEC)。该第一封装包括第一基板和耦合到第一基板的第一管芯。第二封装被耦合至第一封装。第二封装包括第二基板和耦合到第二基板的第二管芯。TEC位于第一管芯和第二基板之间。TEC被适配成在第一封装和第二封装之间动态地来回散热。TEC被适配成在第一时间段中将来自第一管芯的热耗散到第二管芯。TEC被进一步适配成在第二时间段中将来自第二管芯的热耗散到第一管芯。TEC被适配成将来自第一管芯的热通过第二基板耗散到第二管芯。
一种装置和方法热管理具有多个具有微处理器的节点的高性能计算系统。为此,装置和方法监测a)高性能计算系统的环境和b)高性能计算系统的至少一部分中的至少一个的温度。作为响应,该装置和方法根据所监测的温度中的至少一个控制多个节点中的至少一个节点上的至少一个微处理器的处理速度。
公开了一种包括有源热管理系统的超声探头。该有源热管理系统可包括被联接到超声探头的换能器组件的流体室。该流体室可包括可消散掉来自换能器组件的热量的冷却剂。该有源热管理系统还可包括被联接到流体室和热管理系统的散热片。该散热片可包括延伸到冷却剂中的翅片。冷却剂可以是液体或气体。冷却剂可被通过循环装置在流体室内循环。循环装置可以是泵、风扇或叶轮。超声探头还可包括在换能器组件的透镜上形成外罩的窗口。该外罩可被流体地联接到流体室并且被填充有冷却剂以消散掉来自透镜的热量。
一种用于车辆的热管理系统包括外壳,该外壳容纳有空气处理单元、第一回路、第二回路和控制界面模块。空气处理单元包括壳体和可变速鼓风机,可变速鼓风机构造成用以提供通过壳体的空气流。第一回路包括串联的压缩机、冷凝器、贮液干燥器、膨胀阀和冷却器,冷凝器与空气处理单元热连通。第二回路包括第一环路、第二环路和第三环路,第一环路包括第一回路的冷却器,第二环路包括与空气处理单元热连通的散热器,并且第三环路包括加热器。控制界面模块构造成用以对空气处理单元、第一回路和第二回路中的每一者进行控制。
本发明涉及基于条件的动力系控制系统。一种用于开发用于动力系系统的控制器的设定点的系统和方法。控制器可以被参数化为设定点的函数,以提供针对发动机或动力系的当前操作条件的用户或操作者认为可接受的性能变量。控制器可以在动力系系统的操作期间实时地确定设定点轨迹并确定所操纵的变量的位置,以将所控制的变量驱动到相关联的和所确定的设定点轨迹。本系统和方法可以在线且实时地确定针对动力系条件的设定点轨迹,而设定点轨迹先前已离线地确定用于动力系控制。
一种示例性方法包括使流体沿着延伸穿过热交换器和电池组的流体回路循环,并且在循环期间,利用排气流加热流体并使用流体来加热电池组。示例性车辆系统包括电池组、热交换器、配置为在电池组和热交换器之间循环流体的流体回路、以及可在加热位置和冷却位置之间来回移动的阀。处于加热位置的阀与处于冷却位置的阀相比允许沿着排气回路的更多的流量,以加热流体回路中的流体。