本文公开用于具有改进的热特性的有源光缆(AOC)组件的结构和方法。在一个实施方案中,AOC组件包括光纤电缆,所述光纤电缆具有附接至连接器的第一端,所述连接器具有附接至壳体以用于从所述连接器散热的热衬套。所述AOC组件可从所述连接器的有源部件耗散适合的传热率,如从所述连接器耗散0 75瓦特或更大的传热率。在一个实施方案中,所述热衬套至少部分地设置在所述连接器的引导罩下方。在另一个实施方案中,所述连接器的至少一个部件具有多个散热片。其它AOC组件可包括具有用于从所述组件散热的拉片的连接器。
公开了用于具有冷却系统的电池模块 系统的系统。根据公开的实施例,所述冷却系统可以设置成抵靠所述电池系统的外壳的外表面。所述冷却系统(30)可以利用空气作为冷却剂来移除所述电池模块(60)内的电池单元(32)所产生的热量,从而防止所述电池单元过早老化。所述冷却系统的实施例可以包括歧管、通道(48)、翅片(50)或它们的组合,它们可以沿着所述电池模块外壳(34)的表面引导冷却空气。这些特征可以在所述电池系统内形成等温分布。
管理化学反应过程的热的方法。
描述了灯的实施例,其使用发光二极管(LED)来生成与白炽灯一致的强度分布。在一个实施例中,灯(100)包括漫射体(108),漫射体(108)具有带光反射上部(110)和光透射下部(112)的球形几何形状。灯(100)还包括热管理系统,其具有围绕漫射体(108)环形地设置的多个光活性散热元件(118)。在一个示例中,散热元件(118)与漫射体(108)间隔开来促进对流散热。
本发明提出了一种小型化阵列设备的液冷机架,分流器通过自密封卡口液体连接器连接外部冷却液源,在分流器主流道上有向模块冷板和电源冷板分流冷却液的分流道;模块冷板通过盲插液体连接器与分流器连通;相邻模块冷板之间形成收发模块的安装空间;两个电源冷板分别固定安装在模块冷板整体的上方和下方;电源冷板通过自密封盲插液体连接器连接数字处理模块集成液冷结构。本发明提出的液冷机架兼具复杂流路组织、散热和承力功能,通过紧凑且巧妙的结构布局和流路设计,以有限的液冷资源实现了高热流密度的收发模块散热,同时兼顾多个具有差异化散热要求的功能模块的有效热管理,并实现了满足平台装载的小型化要求。
一种用于天然气罐的热管理系统包括容器以及操作性地定位成选择性地冷却该容器的冷却机构。本文还公开了一种用于在补给燃料期间使天然气存储的损失最小化的方法。在该方法的一个示例中,冷却机构操作性地定位成选择性地冷却天然气储罐的容器,其在补给燃料事件之前启动。这将容器冷却至预定温度。
本发明涉及估计多电压燃料电池系统中的冷却剂电导率。一种冷却剂电导率方法和装置用来确定循环通过车辆的冷却剂系统的冷却剂何时开始传导电流并且损失其电隔离性质。该系统包括电池监测控制器,该电池监测控制器感测放置在整个燃料电池系统中的一个或多个隔离电阻并且被编程为执行隔离算法。该隔离算法以特定次序断开和闭合接触器,测量一个或多个隔离电阻的电阻并且计算冷却剂电导率值。该系统将指示冷却剂何时需要更换。
本发明涉及热管理废气处理设备及其制造方法。一种废气处理设备被设置在废气处理系统内并且包括波纹金属板制成的金属卷筒,具有从入口端轴向延伸至出口端的纵向延伸通道以及位于金属卷筒的各层之间并且被设置用于使传热介质在金属卷筒中循环的管路,管路在金属卷筒中轴向和径向地延伸。?
本专利公开了一种可实现红绿蓝混合白光输出激光器的阶梯层式结构。该结构包括光纤耦合输出红光激光器,光纤耦合输出绿光激光器和光纤耦合输出蓝光激光器,以及光纤合束结构,散热装置和供电设备。红绿蓝激光器阶梯分层摆放成为阵列,统一放置在机架内,整体供电,配有散热装置,每个激光器经光纤耦合输出,再经光纤合束器最终合为一束白光输出。此结构设计可实现红光、绿光和蓝光统一管理的紧凑阶梯层式高功率白光激光器。本专利提出针对这一紧凑光纤合束器耦合输出的高功率激光器的独特,新颖的阶梯层式统一管理结构设计。
提供一种用于车辆的热管理系统,其具有例如可充电能量存储系统(RESS)的第一加热力装置、和例如内燃发动机(ICE)的第二加热力装置。系统可以允许ICE中的废热存储在RESS中,且可以通过将热量储存在ICE中而冷却RESS。RESS和ICE分别位于第一冷却剂回路和第二冷却剂回路中。系统还包括第三冷却剂回路,其与第一冷却剂回路互连,且经由第一换热器与第二冷却剂回路热连通。第一和第三冷却剂回路配置为让第一冷却剂循环且第二冷却剂回路配置为让第二冷却剂循环。RESS和ICE每一个配置为选择性地运行为热源或散热件。
本发明涉及一种电池模块。所述电池模块包括:沿第一行和第二行布置的多个电化学电池单元,所述第二行偏离所述第一行;以及热交换器,被配置成允许流体通过其流动,所述热交换器设置在所述第一行的电池单元和第二行的电池单元之间,并且具有与所述第一行的电池单元和所述第二行的电池单元中的所述电池单元互补的形状,使得所述热交换器的外表面接触所述多个电化学电池单元中的每一个的一部分。所述热交换器被配置成在入口和出口之间传输所述流体,使得所述流体的流动路径包括多个相邻的流体流动段。
本实用新型涉及一种锂离子动力电池管理系统的下位机,其中,所述下位机主要包括微处理器模块、电压采集模块、均衡模块、温度采集模块、热管理模块、TTCAN通讯模块、电源模块、ID配置开关模块;微处理器模块通过隔离电路后分别与电压采集模块、均衡模块、温度采集模块、热管理模块连接并完成控制。其中,所述电压采集模块采用锂电专用芯片加外扩ADC的方式,提高了集成度、增加了可靠性和性价比;所述TTCAN为时间触发的CAN通讯,用于下位机上报其所管理电池的参数信息,TTCAN方式减少了总线占用率,提高了通讯的可靠性。