本发明公开了一种电动汽车动力电池的热管理系统,包括散热框架、换热片和铜管,利用散热框架支撑单元电池并排列阵列,增加了换热面积,又在每两排电池组之间设置换热片,且装载了空调冷媒的铜管穿过每一片换热片,从而可以利用车内空调为电池组进行加热或降温,使电池组工作在最佳温度范围内,进而提高电池组的性能并延长其寿命。
本发明公开一种带有光接口的封装上光电集成结构及其制作方法。所述封装光电集成结构包括:母板;电子器件单元;光子器件单元,固定于所述基板上;光纤,固定于所述光子器件单元上;散热部件设置于所述电子器件、所述光子器件电路和所述光子器件单元之上,用于吸收热量并散发。本申请的带有光接口的封装光电集成结构通过将所述电子器件单元基板固定于母板上,从而便于在电子器件、光子器件电路、光子器件单元的顶部加装散热部件,进行散热,同时,通过在所述电子器件、所述光子器件电路与所述基板之间填充所述底部填充料,解决了现有技术的结构中,电子器件和光学器件的组装兼容性以及热管理较差的技术问题。
本发明涉及新型激光器技术领域,更具体地是一种新型二极管泵浦浸入式液冷固体激光器增益池,能够处理浸入式液冷固体激光器的均匀散热困难、光束质量差问题的新技术。增益池由上支架(1)、下支架(2)、石英窗口(3)增益介质(4)以及两端盖板组成。本发明巧妙地采用单腔振荡的技术路线,在保持激光器结构紧凑的同时增加光路长度;通过一种高通透液体的层流流动对增益介质两个表面进行均匀冷却,巧妙地建立热管理技术,提高了激光器的光束质量。
本发明涉及一种中高压固体聚合物电解质水电解装置,系统主要包括核心部件电解池堆及水气热管理系统。水供应及管理过程部件包括:水箱、循环水泵、高压补水泵、两位两通电磁阀、水净化装置;气体分离及管理过程部件包括:阳极侧气水分离器、阴极侧气水分离器、单向阀、两位两通电磁阀、氢储箱、氧储箱。本发明流程简单、系统效率高,适用于各种高纯氢、高纯氧需要的场合,尤其是中高压高纯氢、高纯氧需要的场合,如作为大型火力发电机组的冷却介质、半导体行业硅单品制备的保护气、以及高效储能等。本发明与燃料电池组合,可以构成可再生燃料电池系统,广泛适用于UPS电源、高高空以及空间站等场所的储能和用电。
本发明涉及一种固体氧化物燃料电池装置的热管理方法,特别涉及燃料电池装置独立发电过程中负载改变的热管理方法。其特征在于,是一种迭代的自适应控制方法,由初始化模块、参数采集模块、当前装置运转状态判断模块、控制逻辑生成模块、控制量计算模块、控制量下载模块及参数设定模块组成。当前装置运转状态判断模块,根据预设电堆温度及燃烧室温度区间进行判断;控制逻辑生成模块,根据之前及当前装置状态进行逻辑推导;控制量计算模块,其首次调节量是基于输出电流的,后续调节对前次调节定量修正;参数设定模块,可对热管理方法进行配置。与现有技术相比,本发明具有控制回路结构清晰,算法简单,运行稳定可靠,适用性强等特点。
本发明涉及电子封装技术领域,特别涉及一种集成散热结构及其制造方法,包括:载板、芯片、金属层及封装基板;载板上设置有通孔;载板的一侧设置有凹槽,所述凹槽的一端与通孔连通,另一端与载板的外边缘连通;金属层设置在凹槽的表面;载板连接在芯片的上端;芯片封装在封装基板的上端。本发明提供的集成散热结构及其制造方法,能够极大程度的提高芯片的散热性能,提高芯片的热管理性能和芯片的使用寿命。另外本发明提供的集成散热结构的制造方法将应用于散热的微流道结构直接集成在封装工艺中,解决了其传统散热结构在与器件集成过程中工艺复杂、不易操作的缺点,降低了生产成本、提高了生产效率。
本发明针对目前电池管理系统存在的问题,提供一种适用于锂离子电池和铅酸电池等作为储能介质的新能源发电、微网发电和智能电网储能系统的串联电池组管理系统,包括标准电池包、PACK保护单元、集中控制单元、CAN总线和上位机,PACK保护单元采集标准电池包中各单体电池的电压和温度信号,并控制各单体电池的均衡信号,同时SOC估算各单体电池的剩余容量,PACK保护单元产生的电压、温度、剩余容量数据通过CAN总线传输到集中控制单元集中处理并通过与集中控制单元通讯连接的上位机显示。本发明实时对储能系统进行监控和保护,克服了常用均衡控制方式的能量损耗和热问题,最大程度地延长电池寿命,充分发挥了电池的储能作用。
本发明属液体激光器技术领域,具体涉及一种微珠浸没式液体激光器及其热管理方法。其方法的特点是将激光性能优良的稀土掺杂固体激光增益介质经过光学加工获得微珠,将微珠固定在荧光流动池中并完全浸没在匹配液中,折射率匹配液在微珠和荧光流动池四壁间流动,对增益介质进行直接冷却将泵浦过程中产生的废热带走。本方法具有不间断、实时、高效冷却的特点,可大大提高了热管理效率,极限热功率负载,从而允许注入更高的泵浦功率并大幅提高激光输出功率和频率。同时为光学性能优异但受生长尺寸限制而未被广泛应用的激光晶体提供了新的应用途径,具有广泛的应用前景。
本发明公开了一种二次电池与超级电容混合储能管理系统,包括电池管理子系统、超级电容管理子系统、集中管理子系统和上位机。所述的电池管理子系统由电池管理子单元组成,负责系统中单体电池的状态信号采集、SOC估算和均衡、数据处理和传输,监控电池组双向变换器的工作状态。所述的超级电容管理子系统由超级电容管理子单元组成,负责系统中超级电容器的状态信号采集、均衡、SOC估算、数据传输等,监控超级电容器组双向变换器的工作状态。所述的集中管理子系统,负责系统中电池和超级电容状态数据的汇总,随时调整接入总线的电池组和超级电容器组的数量。所述的上位机,显示系统中所有电池和超级电容的状态信息。本发明可有效延长电池和超级电容的循环寿命,为二次电池和超级电容器作为储能介质的新能源发电系统、智能电网、微网发电系统储能技术提供有力的支撑。
本发明涉及相变储能材料 石墨烯 多孔陶瓷复合热管理材料及其制备方法和应用,所述材料包括:石墨烯 多孔陶瓷导热 导电材料、以及填充在所述石墨烯 多孔陶瓷导热 导电材料中的相变储能材料,其中石墨烯 多孔陶瓷导热 导电材料包括多孔陶瓷基底及沉积在其上的石墨烯。本发明提供的复合热管理材料可以有效解决解决现有技术中存在的相变储能材料热交换性能低问题,对相变储能复合材料研究和应用具有极大意义。
一种基于低熔点金属关节的柔性导热装置,其由N根柔性管道式液体金属关节和(N+1)根热管组成;所述N为1~9的正整数;所述热管连通于所述柔性管道式液体金属关节的两端;柔性管道式液体金属关节内存储具有高热导率且在室温下为液态的低熔点金属;运行过程中,热量顺序经过间隔排列的逐根热管和逐根柔性管道式液体金属关节,实现热量的传输。因为低熔点金属具有高的热导率,因此装置可实现高效的传热性能;同时,柔性液态金属连接可保证整根导热器件灵活弯折;本发明结构简单,导热性能优秀,弯折灵活度高,可应用于笔记本电脑、手机、服务器等IT及航天热管理领域。
本发明涉及一种数据中心双流体热管理的供暖系统,其包括:液态金属散热装置、储水箱、供暖系统,以及用于连通水箱与供暖系统的连接管路;液态金属散热装置包括:一组直接与CPU表面相接触的导热平片、装有驱动泵的传输管道和置于储水箱内的肋片式散热器,相连通的导热平片内的空心流道、驱动泵内的槽道以及肋片式散热器的散热底座内的空心流道内装有流动的液态金属。本数据中心双流体热管理的供暖系统利用液态金属作为一次换热流体,水作为二次换热流体,能耗低,降温大,噪音小,可靠性高,能效高,安装及维护方便,具有大规模推广普及应用价值。