本发明提供了具有降低热串扰的热管理部件的封装件及其形成方法。示例性封装件包括:位于封装部件的表面上的第一管芯堆叠件、位于封装部件的表面上的第二管芯堆叠件、以及位于第一管芯堆叠件和第二管芯堆叠件上方的轮廓盖。轮廓盖包括位于第一管芯堆叠件上方的第一导热部分、位于第二管芯堆叠件上方的第二导热部分、以及位于第一导热部分和第二导热部分之间的热阻挡部分。热阻挡部分包括低热导率材料。
本实用新型公开了一种具有加热功能的动力电池热管理系统,包括动力电池箱和热管理控制系统。若干单体电池相邻排列形成电池组置于电池箱壳体内,在相邻电池间隙和电池组宽度方向上的最外侧电池表面夹设有复合相变材料板;所述复合相变材料板与热管结合组成复合相变材料热管耦合组件并加设在电池组两侧;热管在电池模块外壳上的通孔伸出,伸出端连接有加热装置和散热风扇。可编程自动调温器通过编写程序对温度传感器传来的信号进行处理决定是否启用风扇和加热装置。本实用新型具有整体结构简单稳固、效率高、运行稳定等优点;并且可以对电池组进行直接、统一、均匀降温和加热,使电池工作在合适的温度范围,完善了电动汽车电池热管理系统。
一种口琴通道式热交换器。解决现有对于纯电动汽车和串联式混合动力汽车,空气换热器难以满足电池热管理效果的问题。其特征在于:包括多组间隔并联布置的散热组件,散热组件包括第一集流器、第二集流器以及连通第一集流器和第二集流器的水冷板,第一集流器上设有两个水管接头;其中一侧的散热组件的第一集流器连接进水管,另一侧的散热组件的第一集流器连接出水管,各个散热组件的第一集流器之间通过中间水管相互连通;各组散热组件的水冷板两侧设置电池,电池与水冷板夹紧贴牢。其优点在于散热组件间隔并联布置,并与电池夹紧贴牢,实现水冷效果,不仅结构更加简单紧凑,成本低,而且换热系数更高、冷却加热度快、安全性能高,效果更好。
本实用新型是有关一种新能源车辆的集中式多工况热管理系统,包括制冷剂回路和冷却液回路;制冷剂回路包括压缩机、和压缩机连接的冷凝器、并联于压缩机和冷凝器两端的乘员舱制冷剂支路和动力电池组制冷剂支路,乘员舱制冷剂支路包括电磁阀和给乘员舱制热的蒸发器,动力电池组制冷剂支路包括电磁阀和给冷却液降温的热交换器;冷却液回路包括PTC加热器、并联于PTC加热器两端的乘员舱冷却液支路和动力电池组冷却液支路,乘员舱冷却液支路包括泵和给乘员舱制热的加温器,动力电池组冷却液支路包括电磁阀、泵、热交换器、动力电池组、回流阀和单向阀。本实用新型可以利用一套制冷 制热元件实现新能源车辆对乘员舱和动力电池组进行独立热管理。
本发明提供了一种封装件,该封装件包括具有导电层的衬底,并且导电层包括暴露部分。管芯堆叠件设置在衬底上方并且电连接至导电层。高导热系数材料设置在衬底上方并且接触导电层的暴露部分。封装件还包括凸轮环,凸轮环位于高导热系数材料上方并且接触高导热系数材料。本发明涉及具有热点热管理部件的3DIC封装。
本实用新型公开了一种车用大功率LED照明灯的热管理装置,旨在提供一种结构简单、方法可靠、成本低廉的车用大功率LED照明灯的热管理装置。它包括LED、基板、驱动电路板和散热器,驱动电路板固定在壳体内,壳体设置在散热器上面,壳体与散热器之间设置有空隙。驱动电路板上面设置有控制元件,控制元件与驱动电路连接,与LED散热基板或散热器靠近固定。车辆往前运行时,空气流体吹向散热器,车辆静止时,控制元件通过驱动电路控制LED结温上升,本实用新型适用于车辆大功率LED照明灯。
一种耐冲击的动力电池组装置,包括箱体外壳,置于箱体外壳内的箱体内壳,所述外壳和箱体内壳间形成空腔,该空腔内填充纳米流体,所述箱体内壳内部通过隔板隔开成多个电池槽,在每个电池槽内填充有相变材料且放置有动力电池,在所述箱体外壳和箱体内壳的顶部设置有上盖;本实用新型结构中纳米流体可以吸收冲击能量以及吸收电池产生的热量,相变材料也可以吸收电池产生的热量;在一个装置里同时实现电池的耐冲击性能和高效的热管理,此装置简单且应用范围广泛,可以有效地避免冲击作用对电池的影响并提高热管理的效率和电池的性能。
本实用新型公开了一种电池无源热管理装置,包括电池组、电池箱、箱内水平毛细热管、重力热管、箱外水平毛细热管和散热装置,电池箱密封并设置有保温层,重力热管内设置有易挥发液态工质,电池组和箱内水平毛细热管均设置在电池箱内,箱内水平毛细热管设置在电池组的正上方,箱外水平毛细热管设置在电池箱的正上方,重力热管连接箱内水平毛细热管和箱外水平毛细热管,箱外水平毛细热管连接散热装置。本实用新型的电池无源热管理装置利用重力热管“热二极管”和低于临界温度不能导热的性质来实现电池组的热管理,可以用来解决电池箱的散热和保温的矛盾,电池箱密封并设置有保温层可以对电池起到很好的保温作用,可以全电池寿命周期内免维护。
本实用新型涉及一种参数显示装置,具体涉及一种触屏式热管理系统参数显示装置,所要解决的技术问题是提供了一种使用方便,能够清楚显示汽车各部件工作状态的触屏式热管理系统参数显示装置,所采用的技术方案为包括热管理系统主控制器和触摸显示屏,所述触摸显示屏内置有触摸屏驱动电路,所述触摸屏驱动电路上设置有电源驱动电路和通讯电路,所述通讯电路与热管理系统主控制器的信号输出端相连接;本实用新型广泛用于汽车热管理系统参数的监控。
本发明涉及一种基于水缓速器的混合动力汽车及其控制方法,其驱动系统包括驱动电机、动力电池、发动机、水缓速器、离合器、动力耦合器、变速器、车桥等。其中,发动机输出轴与水缓速器的动轮输入轴连接,水缓速器的动轮输出轴通过离合器与动力耦合器的第一输入轴相连接。相应的热管理系统由散热器、冷却风扇、主路水泵、第二开关阀、第一开关阀、旁路水泵、冷却管路、水缓速器控制阀组成。其中,驱动电机、动力电池、发动机的冷却水套以及水缓速器的工作腔与散热器的连接方式均为并联连接。
本实用新型提供的带热设计的MMC子模块,能够解决子模块热耗散的问题,采用强迫对流冷却的方式,在自然对流的条件下,给散热片装上风扇,使得空气在散热片助片间加快流动,其结构包括:由两个IGBT组成一个逆变半桥的结构,其中上半桥开关管由IGBT及与之反并联的二极管组成,下半桥开关管由IGBT及与之反并联的二极管组成,另外包括子模块储能电容器;电源模块,给风扇模块供电;风扇模块,包括驱动电路和扇体。另外,子模块还包括散热片以及外壳。本实用新型提供的带热设计的MMC子模块,通过其结构设计,可以有效地解决子模块热耗散的问题,及时排出IGBT在功率传输时产生的热量。
本实用新型公开了一种电动汽车电池组热管理系统,包括位于电池箱体内部的箱内液体循环路径和位于电池箱体外部的箱外液体循环路径;箱内液体循环路径包括加热单元A、热交换器A、液压泵A、三通阀A及流量分配单元;箱外液体循环路径包括燃料加热器、开关阀、开关阀C、热交换器B、开关阀A、三通阀B、散热器、空调系统、储液罐及开关阀D。使电池系统在充电状态以及不同的行驶状态下始终保持在良好的工作温度下,保证各电池单体之间的温度均衡以及降低电池系统的热管理能耗,从而保证在不同的车辆状态下都能够采用合理的热管理方式对电池系统进行热管理,延长电池系统的使用寿命,降低电动车电池的使用成本以及整车能耗。