超声探头(1)包括壳体(6)、可操作地将声能发送向探头适于声学耦合至目标物体或区域的区(801)的换能器组件(301)、包括布置为将由换能器组件产生的热传递至位于此换能器组件外的一个或多个区或区域(103,7)的热传递装置(2,5)的冷却系统。所述热传递装置包含石墨烯。
本发明涉及一种针对姿控发动机大羽流影响的气瓶热防护结构及气瓶,该热防护结构包括柔性防热层和多层隔热组件,其中多层隔热组件包覆在气瓶的圆柱段表面,柔性防热层包覆在气瓶两端的半球体表面,以及气瓶的圆柱段中多层隔热组件的表面;所述多层隔热组件包括n个反射层、n-1个隔离层和1个外包覆层,其中n个反射层与n-1个隔离层交替排布,最内层与最外层均为反射层,且最内层的反射层与气瓶圆柱段外表面接触,最外层的反射层与外包覆层接触,外包覆层与所述柔性防热层接触,n为正整数,且满足如下关系式:n=kρnλmli hmli;本发明热防护结构既保证气瓶满足控温要求,又保证了防热材料设计质量,有效减轻重量,节约产品成本。
本实用新型属于汽车热管理控制技术领域,具体涉及一种乘用车热管理控制阀监测及控制系统,热管理控制阀包括电子执行器和三通阀,控制器分别与顺序、周期限定模块一和顺序、周期限定模块二连接,所述的顺序、周期限定模块一分别与三通阀角度采集模块、发动机冷却液温度采集模块、三通阀目标角度控制模块、三通阀电机控制模块连接并限定其动作顺序和周期;所述的顺序、周期限定模块二分别与发动机信息采集模块、目标水温控制模块连接并限定其动作顺序和周期,该系统通过监测到的数据分析计算出三通阀内球阀应该转多少角度,从而合理的分配冷却液的流量达到控制汽车水温的目的,让汽车在一个更加经济的车况下运行,实现发动机最省油的目的。
本发明涉及测试仿真领域,其实施方式提供了一种电动汽车热管理水泵的模拟方法,所述方法包括:获取输入所述水泵的信号,并确定输入信号正常;根据用户选择的水泵工作状态,生成对应的PWM波形;输出所述PWM波形,作为所述水泵的工作状态反馈。同时还提供了对应的电动汽车热管理水泵的模拟装置,以及对应的设备。本发明提供的实施方式避免了采用实体热管理水泵进行测试带来的能耗高和安全隐患的问题,且方便用户选择需要的工作模式。
本发明涉及一种用于混合动力或电动车辆的热管理的回路(1),所述热管理回路(1)包括第一可逆空调环路(A),制冷剂流通通过该第一可逆空调环路,且该第一可逆空调环路包括共同设置在第二环路(B)上的双流体热交换器(19),热传递流体在该第二环路中流通;第二、热传递流体流通环路(B),包括:第一流通分支(B1),其沿热传递流体流通的方向包括第一泵(49)、布置在内部空气流(100)中的第一散热器(45)、和电池热交换器(47);第二流通分支(B2),其与第二散热器(45)并联连接,并包括第二泵(41)和用于电加热热传递流体的装置(43);第三流通分支(B3),其与第一泵(49)和电池热交换器(47)并联连接,所述第三流通分支(B3)包括所述双流体热交换器(19)。
本发明涉及用于储热能力装置的装置和方法,所述储热能力装置具有至少一个主体和至少一个同轴装置,所述主体具有由一个或多个聚合物层制成的封装件,所述封装件界定了用PCM填充的中空体积,所述同轴装置围绕所述至少一个PCM填充的主体的整个长度;及其用途。
本发明属于电动车领域,公开了一种电动车热管理系统及方法,热管理系统包括控制器、第一溢水壶以及水循环管;水循环管内填充循环水,水循环管包括水循环主管、第一支管、第二支管、第三支管以及第四支管;水循环主管的两端均与第一溢水壶连通,水循环主管上设置第一水泵、驱动电机水套和第一温度传感器;第一支管的两端均与水循环主管连通,第二支管、第三支管以及第四支管的一端均与水循环主管连通,另一端均通过三通阀与第一支管连通;第二支管上设置第一散热器,第三支管上设置PTC加热器和第二水泵,第四支管上设置暖风芯体。能够最大限度的采用驱动电机的余热通过暖风芯体采暖,有效降低PTC加热器的使用频率,达到降低整车能耗的目的。
可在低温环境快速启动的燃料电池热管理系统,属于新能源技术领域。本实用新型包括氢燃料电池堆、冷却液箱、散热器、换热器和燃烧器,所述氢燃料电池堆一端连通空气输入管道和氢气输入管道,所述氢燃料电池堆另一端连通空气输出管道和氢气输出管道,空气输出管道和氢气输出管道分别通过支路管道与燃烧器连通,燃烧器的出口与换热器的换热器高温入口连通,换热器的换热器高温出口通向外界,冷却液箱与散热器建立连通,散热器入口与换热器的换热器低温入口相连,换热器的换热器低温出口与氢燃料电池堆相连,氢燃料电池堆另一端与冷却液箱入口相连。本发明的目的是为了提高燃料电池低温环境下启动速度。本实用新型结构简单、造价低,适于推广使用。
一种电动汽车锂离子电池包热管理系统空气换热器,包括导热板和换热片,换热片前后对称设置在导热板左侧;所述的导热板为矩形板结构,导热板的前面左侧均匀设置有安装通孔;所述的换热片为横截面成“E”形的散热片,换热片的底板内侧面与导热板面接触;通过本实用新型的使用,达到了很好的效果:电动汽车锂离子电池包热管理系统换热器通过将电池包和外部的换热设备进行热量的快速交换,从而使电池包温度控制在最佳的工作温度,有效的提高了电池的续航里程和电池的使用寿命,明显的提高了电池的安全性,从而保证了电动汽车的使用可靠性。
一种锂电池恒温控制热管理系统,包括电池箱、换热机构、加热机构、水泵、水箱、制冷结构和控制机构,换热机构设置在电池箱的一侧,水泵设置在换热机构一侧,加热机构设置在水泵一侧,水箱设置在加热机构和换热机构之间,制冷机构设置在水箱一侧,控制机构设置在电池箱的一侧;本实用新型的使用达到了良好的效果:锂电池恒温控制热管理系统及使用方法通过电池箱、换热机构、加热机构、水泵、水箱、制冷结构和控制机构的合理搭载,实现了对锂电池在不同季节不同温度准确控制,使电动汽车在高温炎热或低温寒冬时均可维持在最佳工作温度范围内、并降低整车用电量,延长整车续航里程、提高蓄电池使用寿命,降低用户使用成本。
本实用新型涉及一种数据中心散热与办公 住宅供暖协同热管理系统,包括散热冷板、翅片盘管、风机、水泵和循环液缓冲装置。散热冷板贴合安装在数据中心的热源上。散热冷板包括铝制平板和设置在铝制平板内部的液体通道。翅片盘管包括盘管和安装在盘管上的若干翅片。风机位于翅片盘管的进风口侧。散热冷板的出口通过管路一接翅片盘管的入口,翅片盘管的出口通过管路二接循环液缓冲装置的入口,循环液缓冲装置的出口经管路三接水泵的入口,水泵的出口通过管路四接散热冷板的入口。由以上技术方案可知,本实用新型将数据中心散发的热量作为热源来为办公 住宅供暖,实现了废热的再利用,避免了能量的浪费,达到了节能减排的效果。
本发明提供一种车辆的热管理和过滤系统。热管理系统包括用于调节电池温度的热环路。过滤器位于电池的上游以过滤液体冷却剂。热管理系统还包括与电池热环路流体连通的第二热环路。第二热环路对除了电池之外的车辆系统进行热控制。电池热环路包括多个电池单体。多个换热器翅片位于各个电池单体之间,以提供冷却剂来调节电池温度。过滤器具有基于翅片的过滤器特性的过滤传递函数。