本发明公开了基于蓄冷模式的高能激光热管理系统及其控制方法,该系统包括低温制冷回路系统、内循环载冷回路系统、外循环冷却回路系统和控制系统;控制系统分别与低温制冷回路系统、内循环载冷回路系统和外循环冷却回路系统电性连接;低温制冷回路系统通过板式换热器与内循环载冷回路系统换热,实现热交换和冷量的传递;内循环载冷回路系统和外循环循环冷却回路共用一个开式水箱,实现低温载冷剂和吸收废热后的高温载冷剂相混合,达到吸收废热目的。本发明采用基于低温载冷剂蓄冷后吸收激光废热的方式,能够大幅度降低热管理系统的体积、重量和运行功耗,特别适用于短时工作、长时间待机运行的车载、机载等移动平台上所布设的高能激光系统。
本发明公开一种基于CFD的商用车发动机舱热管理模拟方法,包括如下步骤:S1、进行CFD前处理,获得商用车发动机舱的外流场域以及流体网络;S2、根据外流场域及流体网络,计算商用车发动机舱内流体的分布状况;S3、根据商用车发动机舱内流体的分布状态获取商用车发动机舱内的温度风险点,完成商用车发动机舱热管理模拟。本发明能够快速、直观地对商用车发动机舱内的热分布进行模拟。
一种用于车辆的集成热管理系统的控制方法,包括:在车辆起动后将发动机冷却剂温度与预定的第一设定温度进行比较;当发动机冷却剂温度高于第一设定温度时,将环境温度与设定环境温度进行比较,并将空调器制冷剂压力与设定压力进行比较;以及当环境温度高于设定环境温度且空调器制冷剂压力大于设定压力时,基于空调器制冷剂压力来控制集成流量控制阀的打开和闭合操作以增大通过集成流量控制阀供应到散热器的冷却剂的流量。
本发明公开了一种用于增程式电动车辆的热管理系统及车辆,涉及车辆技术领域。用于增程式电动车辆的热管理系统包括管道连接的电子水泵、电机控制器、发动机进气冷却器、包含驱动电机的电驱动模块和电机散热器;其中,用于增程式电动车辆的热管理系统包括电机冷却系统和发动机进气冷却系统,电机冷却系统包括电子水泵、电机控制器、包含驱动电机的电驱动模块和电机散热器,发动机进气冷却系统包括电子水泵、发动机进气冷却器和电机散热器。本发明还提供了一种车辆,包括上述的用于增程式电动车辆的热管理系统。本发明能够简化整车热管理系统的结构,降低整车热管理系统在整车中布置的难度。
本发明公开了一种电池热管理机组及机组电路。其中,该机组电路包括:系统控制器,用于输送高压电能;主机,与系统控制器连接,至少将高压电能输送至主机的多个部件中,其中,主机至少包括:高压电输出接口和低压通信接口;副机,与主机连接,用于从高压电输出接口接收高压电能,并从低压通信接口接收主机发送的低压控制信号,其中,低压控制信号用于冷却至少一组电池单元。本发明解决了相关技术中需要多套电池热管理系统实现动力电池的冷却,零部件较多,成本较高的技术问题。
本发明公开了一种高效智能的电动汽车热管理系统,涉及电动汽车电池热管理技术领域,包括水箱、电动机冷却系统、水暖PTC、冷水机、电池冷却系统、汽车机舱散热器、前舱盖散热组件以及后备箱盖散热组件,本发明利用汽车前后盖板的空间,并配合整车热管理系统,实现了既能高效散热又能高效利用热量的目的,不仅利用了太阳能,也利用了雨雪天气以及低温的散热特性,并配合汽车前后盖板,实现了高效控温。
本发明公开了一种新能源汽车的电机回路冷却控制方法及系统,针对控制方法,首先获取电机回路中各部件的实时温度,并计算预定时间间隔内各部件的实时温度的差值,并根据差值选取电机热管理回路的冷却档位作为第一差值冷却档位;然后将实时温度与预先设定的温度阈值进行比较,并根据比较后的差值选取电机热管理回路的冷却档位作为第二差值冷却档位;最后比较第一差值冷却档位与第二差值冷却档位,将两者中较高档位作为电机热管理回路的运行冷却档位。因此,本发明的电机回路冷却控制方法,考虑了电机回路中各部件的实时温度的温升这一因素,通过温升确定一定的电机热管理回路的运行冷却档位,避免电机回路温度升高过快的问题。
一种处理用于无线通信的基带信号的信号处理设备,包括:多个温度传感器,其被布置为分别感测信号处理设备的内部温度;阈值存储,其存储多个阈值;以及控制器,其基于感测到的内部温度来估计表面温度,并基于表面温度和由多个阈值定义的多个温度范围来执行热缓解操作。
本实用新型公开了一种基于二次换热的客车整车热管理机组,包括冷媒压缩回路和二次换热回路,所述冷媒压缩回路包括压缩机、第一换热器、第一膨胀阀和第二换热器;所述二次换热回路包括与第一换热器和第二换热器进行热交换的载冷剂及其管路,以及使经过热交换的载冷剂循环流动的散热装置。本实用新型提供的基于二次换热的客车整车热管理机组与传统客车空调相比,具有更强的扩展性、更高的兼容性和更高的集成性,系统中可以按需要增加或减少相应接口以实现电池冷却、余热利用,接入壁挂散热器、除霜器、踏步散热器、司机取暖器等零部件,最终实现整车的热管理;因其二次换热的特点,系统还可以使用R744 R290 R32等具有一定安全风险的制冷剂。
一种氢燃料电池汽车热管理水压快速建立的控制系统及控制方法,用于实现对电堆热管理系统进行快速建立。控制系统包括加压水泵、氢燃料电池电堆、去离子器、散热水箱、补水壶、温度传感器和电控三通阀,补水壶、电控三通阀、加压水泵和氢燃料电池电堆依次设置并通过管路连接在一起形成降温回路,在该降温回路上设有与氢燃料电池电堆并联设置的去离子器、调节管路和散热水箱,且电控三通阀位于调节管路与降温管路的交汇处。本发明可以根据流经氢燃料电池电堆的水温进行相应热管理,水温较低时,加压水泵处于非工作状态;水温升高但未高于设定值时,加压水泵工作;水温升高且高于设定值时,加压水泵工作且降温回路中的水经过散热水箱。
本发明提供了一种燃料电池热管理装置及其控制方法,所述热管理装置包括燃料电池热管理台架和燃料电池,两者构成循环回路;所述热管理台架的流通管路包括两段主流通管路和三段分支管路,前者分别为流出段管路和流入段管路,所述流出段管路上连接有压缩气体管路,所述流入段管路上连接有供水装置,三段分支管路中第一分支管路为连通管路,第二、第三分支管路上分别设有加热器和散热器。本发明所述热管理台架的结构设计,可以对燃料电池的加热或冷却等不同需求进行控制,也便于对热管理台架及燃料电池的注水、排水吹扫过程进行控制,将燃料电池台架测试的多种操作集成于同一装置内,节省测试时间,提高工作效率,节约设备及操作成本。
本发明公开了一种热管理系统及新能源汽车,所述系统包括温度传感器、控制芯片、制冷信号输入电路、制冷信号输出电路、制热信号输入电路、制热信号输出电路以及半导体制冷片,所述控制芯片连接所述制冷信号输入电路和所述制热信号输入电路,所述制冷信号输入电路、所述制冷信号输出电路和所述半导体制冷片依次连接,所述制热信号输入电路、制热信号输出电路和所述半导体制冷片依次连接。本发明通过输出制冷信号或者制热信号至所述半导体制冷片,使所述半导体制冷片可以准确的进行制冷或者制热,从而实现了对电池的工作环境温度的调节,使电池工作于合适的温度环境下,保证电池的寿命和使用性能。