热传商务网-热传散热产品智能制造信息平台
信息列表
  • 一种纯电动汽车整车热管理控制系统及其控制方法

    本发明涉及一种纯电动汽车整车热管理控制系统及其控制方法,由电驱动系统冷却回路、动力电池低温散热回路、动力电池高温冷却回路、动力电池充电加热回路、乘员舱加热器采暖回路和乘员舱制冷回路组成。本发明可对电动汽车的各个部件进行有效的热管理,可以控制电动汽车电池及驱动部件的工作温度,实现了电动汽车完整的热系统管理,提高整车热管理系统的效率,节约动能消耗。

  • 电动汽车电池箱空气循环温度管理系统

    本实用新型公开了一种电动汽车电池箱空气循环温度管理系统,该系统包括空气循环装置、制冷剂循环装置和冷却液循环装置,空气循环系统包括鼓风机、电池箱散热器、电池箱,循环风道;所述制冷剂循环系统包括电动空调压缩机、冷凝器、压力开关、电磁开关和膨胀阀和换热器及连接管路;鼓风机,电池箱温度传感器和设置在管路中的所有阀体均与整车控制器相连。本实用新型可以确保锂电池的正常工作,主要是根据电池箱传感器传出的温度信号,在整车控制器的控制下,利用鼓风机产生的气流,吹过电池箱散热器,将经过制冷剂循环系统和冷却液循环系统冷却和加热的冷却液的能量吹入电池箱,使电池箱内的温度始终保持在合理的温度范围内。

  • 枢转的热转移接合件

    一种嵌入式灯具热管理组合件(20),其包含:嵌入式灯具罐(22),嵌入式灯具罐具有敞开下端(26)和上端(24),至少一个侧壁(28)在所述敞开下端与封闭上端之间延伸;中间散热器(50),其连接到所述灯具罐,所述中间散热器可通过水平平面旋转;源散热器(70),其可通过竖直平面移动,所述源散热器通过所述中间散热器将热量转移到所述灯具罐。

  • 一种保证发动机供油可靠的飞机热管理系统

    本实用新型属于航空技术领域,涉及一种保证发动机供油可靠的飞机热管理系统,所述采用位于油箱中的两个互为备份的供油泵的出口与发动机供油管路连通之后分为两路:散热路和直接供油路。本实用新型设置了散热路和直接供油路,避免了串联多个散热器后的燃油压力损失;同时避免了导致发动机供油管路堵塞,引起发动机供油功能失效;并联了吸力供油路,在满足多系统散热的前提下保证了发动机供油的完整性和可靠性。本实用新型避免了传统飞机冲压引气散热对飞机外表面的破坏,简化了结构设计,避免了冲压引气散热方式对飞机发动机有效功率的浪费,提升了飞机效率。

  • 一种提高散热性能的飞机热管理系统

    本实用新型属于航空燃油系统领域,特别是涉及到一种提高散热性能的飞机热管理系统。位于油箱中的两个互为备份的供油泵的出口与供油管路连通,并且油箱回油管路上设置有油箱回油切断阀和回油限流装置。本实用新型避免了飞机冲压引气散热对飞机外表面的破坏,简化了结构设计,满足了特殊的要求;避免了冲压引气散热方式对飞机发动机有效功率的浪费,提升了飞机效率。在供油管路上串联散热器后,提高了进入发动机入口的燃油温度,最大限度的利用了燃油热沉。特别对于高空长航时飞机,避免了燃油温度过低引发的燃油结冰风险。本实用新型热管理集成了多个分系统的散热器,在进行能量集成设计的过程中,推进了机电系统的物理集成。

  • 制备导电薄膜的方法和由该方法制得的制品

    一种自由立膜,包括:i 基体层,其具有相对的表面,和ii 纳米棒阵列,其中纳米棒定向的穿过基体层并从基体层的一个或两个表面伸出至少1微米的距离。一种制备自由立膜的方法,包括:(a)在基底上提供纳米棒阵列,任选的,(b)用牺牲层渗透该阵列;(c)用基体层渗透该阵列,由此产生渗透的阵列;任选的,(d)当步骤(b)存在时,除去牺牲层,保留基体层;和(e)将渗透的阵列从基底平面上移除。根据所选用纳米棒的类型和密度,自由立膜可以用于作为滤光片、ACF、或TIM。

  • 动力电池成组液流非接触热控装置

    本发明提出在动力电池成组液流非接触热控装置的热管理结构中,采用诸如石墨等高导热片作为循环液流与动力电池的换热桥梁,利用石墨片优越的平面导热能力,高效传递热量,保障电池组温度稳定性和均衡性,去除以往电池间的液流流程与介质空间,显著降低电池包体积和重量,实现动力电池成组热控包的紧凑与轻量化。

  • 一种有利于改善发动机中置底盘热管理性能的护板

    本发明涉及一种有利于改善发动机中置底盘热管理性能的护板,它包括主体护板部分,主体护板部分上部设有加强筋部分、安装部分、格栅孔部分和上翘导流部分,主体护板部分整体平直,上翘导流部分与格栅开口部分间设有一段平直过渡板,主体护板左右两侧形成避让悬架结构的两个悬架结构让位槽,左右让位槽正对气流方向各开设让位槽格栅孔。本发明可以主动引导气流,冷却气体更贴近底盘,减少发动机尾部回流,消除热源区域的流动滞止,有效改善发动机体周围流动状况,提高发动机体零件表面流速,降低零件表面气体温度,底盘热管理性能大大提升,一定程度上还降低了整车底盘风阻系数。

  • 一种电动汽车动力电池冷板及使用其的动力电池

    本实用新型涉及一种电动汽车动力电池冷板及使用其的动力电池,冷板(6)包含热交换器件和加热器件。本实用新型集成了热交换器件、加热器件和模组底板结构件的功能,三合一的结构使得电动汽车动力电池包的结构简单、热交换效率高、体积小、质量轻以及成本低。

  • 一种用于测量电池冷却水管温度的温度传感器

    本发明适用于电动车电池热管理技术领域,提供一种用于测量电池冷却水管温度的温度传感器,包括测温元件、一端开口的弧形金属壳、导热材料、导线以及用于与客户端系统对接的接插件,所述测温元件置于所述弧形金属壳内,并通过所述导热材料密封,测温元件与接插件通过导线电连接,所述弧形金属壳的弧面弧度与待测冷却水管表面弧度一致,所述温度传感器还包括固定装置,所述弧形金属壳的弧面与待测冷却水管表面紧密接触。由于弧形金属壳与冷却水管之间的接触面积较大,里面的导热材料受热均匀,测温元件测量得到的温度更为准确;同时由于测量元件封装在弧形金属壳内,可以有效防止外界侵蚀传感器,保证了传感器使用寿命。

  • 偏心的风扇外壳

    本发明的实施例指向一种电气设备系统,包括:电气设备部件;热管理系统,被布置成引导空气通过所述电气设备部件的构件;所述热管理系统的矩形风扇外壳;及在风扇外壳内布置的风扇,其中,风扇的旋转轴相对于所述矩形风扇外壳的几何中心点偏移。

  • 一种挖掘装载机可调节独立散热装置

    本发明公开一种挖掘装载机可调节独立散热装置,冷却总成(1)放置在发动机(5)的皮带轮端,液压泵(4)与发动机(5)连接,液压泵(4)的一个油口通过吸油管(7)与液压油箱连接,液压泵(4)的另一个油口通过油管与电磁比例溢流阀(2)连接,电磁比例溢流阀(2)通过回油管(6)与液压油箱连接,电磁比例溢流阀(2)通过油管与马达(8)连接,温度传感器安装在散热器上,温度传感器和电磁比例溢流阀(2)与热管理系统控制器电连接。有益效果是:风扇不再由发动机直接驱动,热管理系统控制器分析温度传感器检测到的散热器实时数据,通过电磁比例溢流阀控制油量达到根据散热器温度控制风扇转速的目的,节约油耗,降低噪声。