本发明提供了一种用于电动汽车主动热管理的全铝水冷散热电池箱,包括多个电芯、铝制电池模组外壳和铝制底托;所述铝制电池模组外壳上设置有多个插槽,所述电芯安装在所述插槽内,所述电芯和所述插槽之间设置有第一导热结构;所述铝制电池模组外壳安装在所述铝制底托上,所述铝制电池模组外壳和所述铝制底托之间设置第二导热结构。与传统电池箱相比,本发明的全铝水冷散热电池箱具有温度分布均匀的优点;并且能达到防尘、防水要求;比现有基于水冷散热的电池箱安全,无须增加复杂的水冷结构,无须担心漏液,无须担心绝缘不良问题;而且由于使用了相变材料,导热封灌胶,导热泡棉等材料,所以有效地降低了热阻,提高了导热效率。
本发明公开了一种柴油机智能热管理系统。该系统包括:ECU;转速传感器,与ECU的输入端连接;负荷传感器,与ECU的输入端连接;温度传感器,与ECU的输入端连接;压力传感器,与ECU的输入端连接;电控水泵,与ECU的输出端连接,使其转速实现电控控制;电控节温器,与ECU的输出端连接,使其阀门开度实现电控控制;以及电控风扇,与ECU的输出端连接,使其转速实现电控控制。该柴油机智能热管理系统结构简单合理,其主要零部件水泵,节温器,风扇均为电控控制,通过电控策略的标定,使柴油机起动后水温迅速上升至目标温度附近,减少暖机时间,达到精确控制水温,延长柴油机寿命,降低柴油机的油耗和排放。
本实用新型提出一种用于混合动力汽车的热管理系统,混合动力汽车包括电机动力系统和发动机动力系统,用于混合动力汽车的热管理系统包括:第一水泵;第一控制阀;第二水泵;第三水泵;第一加热器;第二加热器和控制器。本实用新型可通过控制第一水泵、第二水泵、第三水泵和第一控制阀以使第一加热器对电池子系统进行加热,并在发动机工作时利用发动机冷却水的余温来给电池子系统加热,保证电池在低温下的性能。同时,还可以不利用发动机水循环,无需启动发动机,保证了混合动力汽车在纯电动工况下的节能性,提升了混合动力汽车的节能性和环保性。
本实用新型适用于电动车电池热管理技术领域,提供一种用于测量电池冷却水管温度的温度传感器,包括测温元件、一端开口的弧形金属壳、导热材料、导线以及用于与客户端系统对接的接插件,所述测温元件置于所述弧形金属壳内,并通过所述导热材料密封,测温元件与接插件通过导线电连接,所述弧形金属壳的弧面弧度与待测冷却水管表面弧度一致,所述温度传感器还包括固定装置,所述弧形金属壳的弧面与待测冷却水管表面紧密接触。由于弧形金属壳与冷却水管之间的接触面积较大,里面的导热材料受热均匀,测温元件测量得到的温度更为准确;同时由于测量元件封装在弧形金属壳内,可以有效防止外界侵蚀传感器,保证了传感器使用寿命。
本发明揭示用于通过测量与便携式计算装置PCD内的处理组件相关联的电力轨上的泄漏电流来确定所述组件的热状态的方法和系统的各种实施例。一个此种方法涉及在处理组件已进入“等待中断”模式之后测量电力轨上的电流。有利地,因为在此模式中处理组件可“断电”,所以与所述处理组件相关联的所述电力轨上剩余的任何电流可归于泄漏电流。基于所述测得泄漏电流,可确定所述处理组件的热状态,且实施与所述处理组件的所述热状态一致的热管理策略。应注意,实施例的优点在于,可确立PCD内的处理组件的所述热状态而无需利用温度传感器。
本发明提供一种用于散热的散热组件,所述散热组件具有至少一个发热部件和散热器,所述散热器具有可传导地连接到所述至少一个发热部件的相变材料。
电动车辆中的诸如电能存储设备(例如,电池、超级电容器或超电容器)、电力转换器及 或控制电路等的各种组件的热管理可使用有源温度调整设备(例如,帕耳帖设备),这些有源温度调整设备(例如,帕耳帖设备)可有利地使用由牵引电动马达在再生制动操作期间产生的电能来供电。温度调整可包括使一个或更多个组件冷却或加热一个或更多个组件。该调整可基于各种各样的因素或状况,例如,所感测温度、所感测电流汲取、所感测电压及所感测旋转速度。
本发明提供一种热管理系统、电池热管理系统、电动车和混合动力车。所述热管理系统包括制热 冷回路和所述制热 冷回路和进行热交换的蓄热 冷回路,其中在所述蓄热 冷回路的循环介质为相变蓄冷材料,其中当所述制热 冷回路进行制热时,在所述蓄热 冷回路的循环介质的温度不低于相变温度时,所述制热 冷回路停止制热;以及当所述制热 冷回路进行制冷时,在所述蓄热 冷回路的循环介质的温度不高于相变温度时,所述制热 冷回路停止制冷。利用本发明的系统,可以实现热管理。
本实用新型公开了一种发动机热管理系统,旨提供一种节能降耗、运行更可靠、延长发动机及附件使用寿命发动机热管理系统;其技术方案时这样的:该发动机热管理系统,包括发动机,发动机的一端通过进水管和出水管连接有无刷电子风扇模块,发动机的另一端与通过CAN总线连接有车载信息终端机构,车载信息终端机构通过3G技术数据线与远程数字化平台连接,所述的进水管和无刷电子风扇模块之间设有发动机水温实时监控机构;属于热管理系统技术领域。
本发明提出在电池组液流叠层换热扁管束结构中,采用扁管束换热结构,形成换热流体与动力电池间的传热通道,换热管束以交错排布方式保证电池片温均性,既达到良好的换热能力,又可减少换热流体容量及所需流程空间,实现轻量化。
用于电气设备的电介质流体组合物包含官能化的12-羧基甲基硬脂酸甲酯,该官能化的12-羧基甲基硬脂酸甲酯具有所需性质,包括:倾点小于-30℃和燃点大于250℃。其可以通过下述方法制备,其中12-羟基甲基硬脂酸甲酯通过与C3-C20醇的反应酯交换形成羟基甲酯,然后使该羟基甲酯与直链或支化C4-C20羧酸反应,该直链或支化C4-C20羧酸选自游离酰氯,脂肪酸,羧酸酐,及其组合。第二步用于将羟基封端,从而制得官能化的12-羧基甲基硬脂酸甲酯化合物,该化合物表现出改善的热氧化稳定性和低温流动性,以及提高的燃点。
本发明涉及电子封装技术领域,特别涉及一种集成散热结构及其制造方法,包括:载板、芯片、金属层及封装基板;载板上设置有通孔;载板的一侧设置有凹槽,所述凹槽的一端与通孔连通,另一端与载板的外边缘连通;金属层设置在凹槽的表面;载板连接在芯片的上端;芯片封装在封装基板的上端。本发明提供的集成散热结构及其制造方法,能够极大程度的提高芯片的散热性能,提高芯片的热管理性能和芯片的使用寿命。另外本发明提供的集成散热结构的制造方法将应用于散热的微流道结构直接集成在封装工艺中,解决了其传统散热结构在与器件集成过程中工艺复杂、不易操作的缺点,降低了生产成本、提高了生产效率。