本发明公开一种能实现对激光增益介质进行有效热控制的热管理方法,其特征在于,抽运光和输出激光方向一致,在激光发射阶段激光增益介质非抽运面近似绝热,冷却阶段采用流速增加的常温的冷却介质进行冷却,在冷却初期,采用常温低流速的冷却介质对热的激光介质进行强迫冷却,数秒后迅速增加冷却介质的流速,所述的冷却介质的低流速的下限为维持冷却介质处于湍流状态。本发明既降低了对冷却系统的要求又降低了冷却初期与被冷却介质接触时带来的应力,同时有效缩短了冷却时间。
本发明公开了一种动力电池热管理系统,特点是包括冷却器、无动力真空引流装置和电池箱,电池箱内设置有多组电池,每组电池上缠绕有传热支管道,传热支管道的上端与无动力真空引流装置相连通,传热支管道的下端与冷却器相连通,冷却器通过第一管道与无动力真空引流装置相连通;优点是本系统通过无动力真空引流装置实现冷却液的循环,与传统的风冷或水冷系统相比,减少了设备体积和所占的空间,降低了能耗,使得电动汽车的结构可做的更加紧凑;而且采用相变流体作为冷却介质,由于相变流体的载热密度大,且相变温度区间较窄,可大大节省冷却介质的循环流量,还可使得发动机缸体的温度更均恒。
本发明涉及一种用于电力蓄能器单元(11)的电池组(1)的热管理的装置,这些电力蓄能器单元被组装在一个刚性壳体(10)内,所述装置包括被结合到所述电池组(1)中的热存储装置(2),该热存储装置包括一个腔室(20),该腔室含有一种相变材料(21)并且具有用于与所述蓄能器单元(11)交换热量的一个容积,该容积由所述壳体(10)的至少一部分界定,该相变材料(21)的熔化能够存储热量,并且该相变材料的凝固能够释放先前存储的热量。根据本发明,所述腔室(20)在其远端(24)装备有一个膨胀器皿(200),该膨胀器皿能够在所述相变材料(21)变相时吸收该相变材料的膨胀。
提供了一种蓄电池组件,其利用电隔离的散热器增强了蓄电池组的热管理和安全性。该蓄电池组件划分成多个蓄电池组,其中每组内的蓄电池处于相同的电压,并且其中每个蓄电池组串联地耦接到其它蓄电池组。散热器被分段,其中每个散热器分段热耦合到单个蓄电池组内的蓄电池,并且其中每个散热器分段与相邻的散热器分段电隔离。散热器分段可以热耦合到(i)冷板和 或(ii)至少一个冷却剂导管并且与之电隔离,该至少一个冷却剂导管继而可以热耦合到热管理系统。
一种用于电池组的热管理系统,该电池组具有传导冷却板和电池单元,该热管理系统包括压缩机、流量控制阀、温度传感器(一个或多个)、以及控制器。压缩机将制冷剂循环通过板以冷却单元。温度传感器测量电池组的温度。控制器被编程以从温度传感器接收温度、并且将切换控制信号选择性地传输至阀以命令方向上的改变、或通过冷却板的制冷剂流量的改变。这限制了电池单元之间随时间推移的温度变化。一种车辆包括变速器、电力牵引电动机、电池组、以及上文提到的热管理系统。一种方法包括接收温度、将切换控制信号传输到阀、并且响应于切换控制信号而经由阀控制通过板的制冷剂流。
本申请公开了各种再制造使用过的电池模块的方法、以及包括新的和使用过的部件的对应的再制造的电池模块。再制造的和使用过的电池模块包括具有电池单元组件的堆叠的电力组件,其中,每个电池单元组件包括多个层,每层包括电池单元和将所述电池单元支撑在所述电力组件内的框架。
一种锂离子电池模块22包括外壳39,所述外壳的尺寸符合标准铅酸电池的外形尺寸。所述锂离子电池模块22还包括:多个锂离子电池单元116,所述多个锂离子电池单元以堆叠的方式设置在所述外壳39内;以及所述外壳39的散热外壁部件60、62。所述散热外壁部件大体上在至少一个方向上延伸至所述标准铅酸电池的最外层尺寸。
本发明具备载热体进行循环的第1载热体回路(C1)、吸入制冷剂并排出的压缩机(23)、使压缩机(23)排出了的制冷剂与在第1载热体回路(C1)中循环的载热体进行换热而对载热体进行加热的高压侧换热器(16)、使在高压侧换热器(16)中加热了的载热体与被输送往车室内的空气进行换热而对被输送往车室内的空气进行加热的空气加热用换热器(18)、使在高压侧换热器(16)中进行了换热的制冷剂减压膨胀的减压部(24、25、27)、以及使在减压部(24、25、27)中进行了减压膨胀的制冷剂与载热体进行换热的第1冷却水冷却用换热器(14),能够将在高压侧换热器(16)中加热了的载热体导入到第1冷却水冷却用换热器(14)中。
一种电子设备包括针对一个或多个发热组件的盖,其中所述盖在保持设备处于规定的温度范围内的同时为发热组件提供至少组合的传导、对流和辐射冷却。通过在盖中的两个或更多个下陷区域中的每一个与一个或多个发热组件之间提供热耦合来实现传导冷却。适当地放置贯穿所述盖的进气口和出气口来为发热组件和热耦合下陷区域提供对流冷却。将来自热耦合到一个下陷区域的发热组件的热与由热耦合到另一邻近下陷区域的其它发热组件生成的热有效地隔离,其中所述其它发热组件至少部分地借助通过两个相邻下陷区域之间的内部区域的出气口热耦合到另一邻近下陷区域。还可通过增加设备盖材料的辐射系数来改善辐射冷却。
本发明公开了一种低速电动车电池管理系统,包括主控部分、采样部分;主控部与采样部之间互相通信;主控部包含中央处理器、电源变换模块、继电器控制模块、RS232模块、系统时钟、存储设备、总电压与绝缘检测模块、电流检测模块、CAN0模块、CAN1模块、CAN2模块、若干个隔离器;采样部包含均衡控制模块、热管理模块、电压检测模块、温度检测模块、CAN模块。该系统的内部电路采用元件贴片工艺、喷胶工艺技术。该低速电动车电池管理系统对电池组的检测、保护措施齐全,提高了电池组的使用寿命、对电池组的管理高效;均衡控制模块中的每个电压均衡单元采用双重冗余的设计,防止了锂电池因均衡功率器件失效导致过放的情况;且该系统的抗振动能力强。
本发明公开了一种动力汽车中锂离子电池的热管理系统,所述锂离子电池包括至少一个电池组,每个所述电池组包括多个前后并排设置的矩形锂离子电池单体,其特征在于,该热管理系统包括翅片和相变材料,在每个所述锂离子电池单体的前后两个端面上各设有一个所述翅片,在每个所述锂离子电池单体的左右两侧各形成有一密封空间,所述密封空间由所述锂离子电池单体和与其对应的两个所述翅片以及一个挡板围成,所述挡板与两个所述翅片固接;在所述密封空间内填充有所述相变材料。本发明在自然对流下即可将电池的温度控制在合适的范围内,达到好的冷却效果,不需要消耗额外的能量。并且本发明结构简单,不需要太多设备。
一种电子系统在其操作期间通过能动地考虑到预期的太阳热负载来执行热管理。根据一个实施例,电子系统确定其位置和预期会影响其位置的太阳热负载值。系统还基于太阳热负载值确定温度偏移值并基于温度偏移值和系统的当时当前温度(例如,可由一个或多个温度传感器确定)预测系统的将来温度。电子系统将预测的温度与至少一个阈值进行比较并在预测的温度超过阈值中的一个或多个的情况下执行热减缓过程。根据电子系统是可移置的另一个实施例中,确定的太阳热负载值可以包括对于系统的预期行进路线的太阳热负载分布。