本公开涉及一种车辆热管理系统及车辆,该车辆热管理系统包括热泵空调系统、电池热管理回路、电驱热管理回路、以及热交换器,所述热交换器同时设置在所述热泵空调系统和所述电池热管理回路中,所述热泵空调系统包括压缩机、室内冷凝器、室内蒸发器和室外换热器,所述电池热管理回路包括动力电池、第一水泵,所述电驱热管理回路包括电机、第二水泵和散热器,所述散热器与所述室外换热器共用一个冷却风扇。该车辆热管理系统中的热泵空调系统、电池热管理回路、电驱热管理回路彼此独立、结构简单,可单独对动力电池、电机和乘员舱进行热管理,热管理效率高。
本公开涉及一种车辆热管理系统及车辆,该车辆热管理系统包括热泵空调系统、电池热管理回路、电驱热管理回路、以及热交换器,所述热交换器同时设置在所述热泵空调系统和所述电池热管理回路中,所述热泵空调系统包括压缩机、室内冷凝器、室内蒸发器和室外换热器,所述电池热管理回路包括动力电池、第一水泵和第一PTC加热器,所述电驱热管理回路包括电机、第二水泵和散热器,所述散热器与所述室外换热器共用一个冷却风扇。该车辆热管理系统中的热泵空调系统、电池热管理回路、电驱热管理回路彼此独立、结构简单,可单独对动力电池、电机和乘员舱进行热管理,热管理效率高。
本发明涉及一种混合动力汽车及其热管理系统,包括空调制冷循环回路、电机换热支路、电池换热支路和发动机换热支路,其中,空调制冷循环回路包括压缩机、冷凝器、蒸发器和换热器,换热器的第一组接口用于连接蒸发器,电机换热支路、电池换热支路、发动机换热支路并联连接并通过水阀连接换热器的第二组接口。本发明通过控制空调制冷循环回路实现车内制冷,通过空调制冷循环回路和电池换热支路实现电池制冷,通过空调制冷循环回路和电机换热支路实现电机制冷,通过电池换热支路和发动机换热支路,实现利用发动机余热为电池加热,通过电机换热支路和电池换热支路,实现利用电机的余热为电池加热,实现了整车能量的高效利用。
本发明公开了一种火星表面热环境模拟系统,包括低气压风速模拟系统、低气压风速测量系统、气体温度控制系统、气体压力控制系统、火星车姿态控制系统。其中低气压风速模拟系统利用真空容器进行改造,在真空容器内增加风道、风扇、导流板、整流网等装置,采用直流吸气的方式,实现火星表面0-20m s的均匀风速模拟;本发明的系统完成了火星车的低压有风热平衡试验,完成特殊环境下的热设计验证,同时可以为火星环境的探测器或载荷提供热试验环境条件,进行相关的试验验证。
本发明涉及一种利用SCR气辅结构的DPF主动再生进气控制系统及方法,所述方法包括:信号获取步骤,获取传感器组件的采集信号,包括DOC前氧气传感器信号SigO1、排气质量流量信号SigQm、DPF前温度传感器信号SigT1、DPF后温度传感器信号SigT2、DOC前温度传感器信号SigT3和SCR后NOx传感器信号SigNOx;触发步骤;DOC前补气步骤;热管理步骤。与现有技术相比,本发明具有可促进喷射燃油在排气尾管中的蒸发、雾化效果,提高HC燃烧效率等优点。
本公开涉及一种车辆热管理系统及车辆,该车辆热管理系统包括电池冷却液流路、采暖流路、换热器、四通阀,所述换热器同时设置在空调系统和所述电池冷却液流路中,所述电池冷却液流路上设置有动力电池、第一水泵,所述采暖流路上设置有第二水泵、第一PTC加热器和用于乘员舱采暖的暖风芯体,所述电池冷却液流路的一端与所述四通阀的第一端口相连,另一端与所述四通阀的第二端口相连,所述采暖流路的一端与所述四通阀的第三端口相连,另一端与所述四通阀的第四端口相连。本公开提供的车辆热管理系统通过四通阀可以将电池冷却液流路和采暖流路的导通或断开,使暖风芯体和动力电池可以串联在一个回路中,热量利用率高,加热效果较好。
本发明公开了一种风冷式电动汽车动力电池热管理系统,属于电动汽车领域。所述热管理系统包括锂离子电池模块,所述锂离子电池模块安装在电池箱体内部,通过设计合理的空气流道,使冷却风按照一定规律流动,使得电池包的散热效果更佳。本发明在电池模块内安装与单体电池一一对应的加热环,可直接对单体电池进行加热,加热效率更高;本发明在每个电池模块上安装测温装置和送风装置,由电池管理系统控制,根据每个电池模块的实际温度调节送风装置的转速,保证整个电池的均一性以及最佳工作温度。
一种车载电池冷却技术领域的两层板式电池冷却板,至少包括盖板、基板、二个连接短管,基板设置于所述盖板的下面,基板上设置安装孔,连接短管与基板固定连接;盖板上还设置有面向所述基板方向凸起的若干扰流部。由于本发明采用了上述结构,可以与电池模组底部直接接触,有效增强换热,让电池模组底部温度均匀,并将电池使用温度控制在有利温度范围区间以内,有利于电池性能发挥,延长电池寿命。此外,还大大降低热管理系统自重,并缩小车内布置空间,且本发明可以根据电池模组大小调节尺寸,其通用性很强。
本发明涉及一种相变胶囊悬浮 漂浮热管理和冷启动系统。在冷却液箱内装有悬浮 漂浮相变胶囊和冷却液的组合体系,悬浮 漂浮相变胶囊的密度与冷却液的密度相当,使其能够悬浮于冷却液中,吸热后密度降低,使其能够漂浮于冷却液表面;冷却液箱与燃料电池堆之间连接形成冷却液的循环回路。本系统通过悬浮 漂浮相变胶囊和冷却液的组合体系与燃料电池堆进行热交换,当燃料电池工作时悬浮 漂浮相变胶囊吸收大量的热量使冷却液为燃料电池堆循环降温,并存储热量,当燃料电池停止运行时悬浮 漂浮相变胶囊释放相变潜热为燃料电池堆保温,缩短燃料电池冷启动时的预热时间,从而同时达到为燃料电池降温和保温的作用,优化燃料电池的热管理和冷启动系统。
本发明公开一种用于高超声速飞行器或发动机的综合热管理系统,包括散布在飞行器上需冷却的高温装置上的分布式集热器,分布式集热器的出口通过管路连通至自身进口形成闭路循环,管路设有燃料涡轮、工质涡轮和工质压气机,燃料涡轮为燃料泵提供动力,工质涡轮为工质压气机提供动力,工质压气机用于压缩工质,工质为超临界工质。利用超临界态工质换热能力强、流动损失小的特点,通过分布式集热器从强预冷器、热防护隔热材料、机载电子设备、燃烧室壁面和滑油系统等需冷却的高温装置上收集大量热量。这些热量能够实现额外的能源供应。例如通过燃料涡轮、工质涡轮做功输出机械能,带动燃料泵、工质压气机等,同时带动发电机,进一步转化为电能并存储。
本发明属于动力电池领域,具体涉及一种动力电池温度预测系统及方法。本发明的动力电池温度预测系统,包括采集模块和温度预测模块,通过充放电过程中锂离子嵌脱反应的通量、电池容量衰减量以及低温加热充电的时间等多目标函数确定关键温度参数进行温度预测。本发明的方法提高了电池温度预测精度,降低温度对电池性能的不利影响。
一种基于热管和相变材料的低温下动力电池热管理系统,包括电池、相变材料以及热管;电池放置在单独的电池箱中;相变材料放置在单独的相变材料箱中;电池箱内每块电池至少与一根热管的一端贴合;热管的另一端伸入相变材料箱内部与相变材料接触;还包括包裹整个系统的保温层。该系统利用热管来传递动力电池运行时产生的热量,利用相变材料来储存热量,并在电池温度降低时输送热量,达到对电池进行保温的目的,整个过程无需任何消耗任何能量,利用电池运行过程中释放出的多余热量,能够良好的保证低温下电池箱始终处在适宜温度范围内,满足低温下电池的保温需求,是一种高效节能的热管理方案。