本发明公开了一种LNG混合动力汽车动力电池热管理系统,通过利用整车发动机运行过程中产生的余热和LNG储气系统的供气管路的低温特性来实现对动力电池系统内电芯温度的调节,从而保证了动力电池系统能够工作在温度相对稳定的环境下。本发明依托整车传统部件,通过实现集成化设计的思路,创新研究出了利用整车多余的能源来实现动力电池系统的自身温度调控,即实现了废弃能量的再利用,又提高了新能源客车的环境适应性,同时也大大的提高了动力电池的使用效率和使用寿命。
本发明公开了一种新能源汽车锂离子动力电池用导热的弹性二氧化硅气凝胶部件,包括:弹性二氧化硅气凝胶异型件、单体电池芯和导热片,单体电池芯外连接有导热片,连接有导热片的单体电池芯设于弹性二氧化硅气凝胶异型件的型腔内,形成单体电池芯小模组。通过上述方式,本发明实现对锂离子动力电池模组内的单体电池芯形成有效的综合防护;弹性二氧化硅气凝胶异型件对单体电池芯起到了减振防冲击的作用,且具有阻燃的功能,能使得单体电池芯的工作温度处在新能源汽车锂离子动力电池热管理系统控制的安全的温度范围内;提高了新能源汽车锂离子动力电池供电的可靠性和安全性,助力我国新能源汽车产业的发展有着重要作用。
一种微通道扁管与相变材料复合的电池成组方法涉及电池的热管理领域。针对方形 软包电池设计了一种符合国内电动汽车(纯电动汽车、混合动力汽车)方形 软包电池的热管理成组方法。本方法将微通道扁管贴合在单片或单排、并列两片或双排电池的两侧,微通道扁管未贴合的部分布置固 固相变材料,通过微通道扁管内的传热介质和固 固相变材料的复合作用实现对电池的冷却 加热。该方法易于根据热管理设计需求调整冷却方式,从而增强传热介质与电池的换热效果,延长电池系统的寿命,并能提高电池系统的安全性。
本发明提供了一种电池包热安全管控系统,涉及电池包热管理领域。该系统包括电池包、管口、流道、连接孔、运动接头、多通控制阀、输气管、气体检测器件、吸气泵、单向阀,以及输液管、控制阀、低温气化液体供给装置,通过多区位过热电池产气巡检检测和热燃抑制一体化结构和热安全管控方法,对电池包内过热电池或电池模组排气进行巡检识别检测,并实施应急冷却,实现过热检测与热燃抑制双重作用,提升电池热管理的热安全管控能力,进一步保证电动汽车电池系统安全。
本发明公开了一种红外隐身及热管理布料及其制作方法,它包括内层织物层、表层织物层,所述表层织物层和内层织物层之间还设有ePTFE膜层,所述ePTFE膜层上设有一层纳米金属膜层,纳米金属层表面有一层含氟树脂层。本发明可作为红外隐身材料抑制红外目标特征,同时具有冬季保温,夏季散热的和防水防油的作用。
本发明公开了一种发动机热管理系统,其包括:发动机进气管、发动机进气总管、中冷器和增压器压气机,发动机热管理系统还包括:控制进气温度旁通管路,其两端分别连接中冷器入口和中冷器出口,且与中冷器并联,控制进气温度旁通管路上设置有第一旁通比例阀,通过调节第一旁通比例阀的位置比例实现不同流量的中冷前进气流量旁通;控制进气量旁通管路,其两端分别连接压气机入口和压气机出口,且与增压器压气机并联,控制进气量旁通管路上设置有第二旁通比例阀,通过调节第二旁通比例阀的开度实现不同工况的进气流量需求;以及温度传感器,其设置于发动机进气总管的管路上,用于测量进入发动机进气总管的进气温度,EUC能够采集进气温度的测量值。
本实用新型公开了一种纯电动汽车整车热管理系统,设有可调节进风格栅,还包括电驱动系统、电池系统和空调系统。所述电驱动系统包括第一水泵、第一三向阀、电驱动散热器。所述电池系统包括电池冷却器、电池、PTC电加热器和第二水泵。所述空调系统包括空调加热芯、止回阀、第二三向阀。本实用新型公开的纯电动汽车整车热管理系统,将电驱动的热量导入到空调系统,在低温工况下辅助空调系统进行采暖,实现了热量循环利用。同时,通过对热管理系统各循环回路的智能控制,从而保证了电驱动、电池等均在合适的温度区间内工作,实现电动汽车完整的冷热系统管理。
公开了用于确定热功率包络的系统和方法的各种实施例。一种方法包括确定针对便携式计算设备中的多个组件的组件和操作点组合集合。该集合的每个组件和操作点组合定义了针对多个组件中的每个组件的可用操作点。便携式计算设备被迭代地设置成该集合中的每个组件和操作点组合。在每个组件和操作点组合处,从多个温度传感器收集功耗数据和表皮温度数据。增强的热功率包络被生成,包括针对每个组件和操作点组合的功耗数据和表皮温度数据。
本发明提供一种车辆用电池组及车辆,本发明的实施例的车辆用电池组包括:一个以上的电池模块;以及水冷式热管理系统,配置于所述电池模块下方;所述热管理系统包括:上板,由表面包括防腐蚀层的钢材质形成,所述上板支撑所述电池模块;以及下板,由表面包括防腐蚀层的钢材质形成,所述下板与所述上板以粘结方式相结合,以形成供冷却水循环的流路。
本发明涉及电动汽车动力电池组的热管理技术领域,尤其涉及一种基于相变材料均热与储热技术的电动汽车电池热管理系统。安装在汽车上,并与汽车的ECU相连接,是由均热模块、储热模块、供水模块、冷却系统L和加热系统R组成;冷却系统L调速阀、加热系统R调速阀、冷却系统L温度传感器、加热系统R温度传感器和供水模块换向阀与汽车电子控制单元ECU相连组成温度控制回路。应用本发明,提高了电池单体和电池组的温度一致性及冷却和加热速度,同时具有高温冷却功能和低温加热功能,降低了能量消耗,减少了对电池组的容量和寿命的损害;结构简单成本低廉。
本发明提供一种车用燃料电池 锂电池混合系统热管理系统,属于新能源汽车领域。在环境温度低于燃料电池启动温度时,锂电池通过放电加热电阻丝来加热燃料电池冷却水回路的水箱,通过水循环使燃料电池达到冷启动温度;在环境温度低于锂电池最佳工作温度时,燃料电池冷却水进入锂电池冷却水回路加热锂电池,使之处于正常工作温度范围;在环境温度高于锂电池工作温度时,燃料电池和锂电池产生的热通过各自的冷却水回路散到大气环境。本发明对现如今燃料电池存在的低温冷启动难,锂电池低温充放电效率低等问题提出了一种解决方案,并且提高了燃料电池的发电效率和锂电池的充放电效率。
本发明为使用润滑油的智能缸套热管理系统,该系统包括内燃机油冷却缸套、电控机油冷却器、补偿桶、油泵、电控阀、温控器、温度传感器和润滑油加热器,内燃机油冷却缸套回路出口端接连电控阀入口端;所述电控阀为基于一个温度传感器的电控阀,电控阀小循环出口端连接在补偿桶和油泵之间的回路中;电控阀大循环出口端连接电控机油冷却器入口端;在内燃机油冷却缸套的回路入口端和油泵之间的管路上设置润滑油加热器,在靠近内燃机油冷却缸套的回路入口端附近设置温度传感器,温度传感器和润滑油加热器均与温控器电连接。该系统将润滑油作为缸套热管理的流体介质,以实现能够达到200℃以上的缸套热管理,从而降低活塞组摩擦功耗。