本发明涉及一种恒温散热器阀(TRV),所述TRV包括: 通信链路,去向房间(9)中一个或多个其它TRV; 输入接口,所述输入接口被配置为允许用户输入所定义的温度设定点(T1)或从所述一个或多个其它TRV获取所述所定义的温度设定点(T1);其中,所述TRV还被配置为将所述所定义的温度设定点(T1)与在同步列表中定义的所述一个或多个其它TRV进行同步。
一种柔性石墨片材支撑结构及热管理布置。所述柔性石墨片材支撑结构包括间隔开的第一支撑构件和第二支撑构件以及柔性石墨片材,柔性石墨片材被固定到间隔开的支撑构件,从而形成在它们之间跨越的独立的挠曲适应区段。具有凸状曲形表面的曲形保持构件被用于使挠曲适应区段保持成钟形曲形,而同时防止柔性石墨片材超过最小弯曲半径。由柔性石墨片材支撑结构形成的热管理布置使得柔性石墨片材能够将热量从一个支撑结构移动到另一个支撑结构,而同时降低在它们之间的振动的传递,并且允许间隔开的支撑结构之间的相对移动。
一种用于温度缓解的方法包括:从被设置在计算设备内的温度传感器接收信号。该计算设备内的处理器芯片产生热量。来自温度传感器的信号被转换成温度数据。该方法进一步包括:对温度数据进行处理以生成该设备的外表面的温度的估计。该处理包括:向温度数据应用低通滤波器,向温度数据应用振幅衰减,以及向温度数据应用延迟。该方法进一步包括:响应于该设备的外表面的估计温度而降低该处理器芯片的操作参数,诸如操作频率。
一种方法包括:从温度传感器接收电信号,其中温度传感器设置在包括处理器芯片的封装件内,进一步其中温度传感器通过封装件内的材料与处理器芯片热分离;从电信号生成温度信息;处理温度信息以确定处理器芯片的性能应当被减轻;以及响应于温度信息而减轻处理器芯片的性能,其中处理温度信息和减轻处理器的性能由处理器芯片执行。
提供了一种用在混合动力车辆中的、具有主动热管理系统的电池组(200)。所述主动热管理系统自容纳在所述电池组的壳体(202)内,并且包括:热通道(212),被配置成提供所述电池组的所述壳体的内部和所述壳体的外部之间的流体连通;热电装置组,被配置成将来自所述电池组的电池单元(204c)的热传递到所述热通道;隔离件(216a),被布置在所述电池单元和所述热通道之间;装置(232),被配置成控制通过所述热通道的流体流;以及控制器(128),被配置成控制所述装置,以主动地控制从所述电池组的所述壳体的内部到所述壳体的外部的热传递,以将所述电池组维持在期望的温度。
本发明涉及控制燃气涡轮发动机来解决空气流畸变。具体而言,提供一种用于响应于燃气涡轮发动机(10)的空气流通路(64)中的空气流畸变来控制飞行器上的燃气涡轮发动机(10)的方法(900)。在一个实施例中,该方法(900)可包括(在904处)通过位于飞行器上的一个或更多个控制装置(500)来确定与燃气涡轮发动机相关联的畸变情况(606)。该方法(900)还可包括(在906处)通过一个或更多个控制装置(500)至少部分地基于畸变情况(606)来确定对于燃气涡轮发动机的失速裕度(604)。该方法(900)还可包括(在908处)通过一个或更多个控制装置(500)至少部分地基于失速裕度(604)来确定发动机控制参数。该方法(900)还可包括(在910处)通过一个或更多个控制装置至少部分地基于发动机控制参数来控制燃气涡轮发动机的构件。
一种用于应用于复合结构上的修补区域的复合板层和粘合剂的热管理的装置使用全部与计算机化的控制系统通信的光学扫描器和投射系统、编码的摄影测量目标、编码的二维热电偶阵列和编码的加热毯的组合,所述计算机化的控制系统建立修补的复合结构、复合结构的修补区域、用于监测修补区域中的温度的热电偶和用于加热修补区域的加热毯之间的空间关系。光学扫描器和投射系统复合结构上的修补区域上方的热电偶的位置处投射热电偶的识别和热电偶的实时温度。
本文公开了用于包含异构的多处理器片上系统(“SoC”)的便携式计算设备中的能效感知热管理的方法和系统的各种实施例。由于该异构的多处理器SoC中的各个处理部件可能在给定的温度,呈现不同的处理效率,因此可以利用能效感知热管理技术(其对各个处理部件在它们测量的操作温度时的性能数据进行比较),以便通过调整针对最低能效处理部件的电源、将工作负载重新分配离开最低能效处理部件、或者转换最低能效处理部件的功率模式,来优化服务质量(“QoS”)。用这些方式,该解决方案的实施例对跨SoC用于处理一个MIPS的工作负载所消耗的平均功率量进行优化。
本文公开了用于包含异构的多处理器片上系统(“SoC”)的便携式计算设备中的能效感知热管理的方法和系统的各种实施例。由于该异构的多处理器SoC中的各个处理部件可能在给定的温度,呈现不同的处理效率,因此可以利用能效感知热管理技术(其对各个处理部件在它们测量的操作温度时的性能数据进行比较),以便通过调整针对最低能效处理部件的电源、将工作负载重新分配离开最低能效处理部件、或者转换最低能效处理部件的功率模式,来优化服务质量(“QoS”)。用这些方式,该解决方案的实施例对跨SoC用于处理一个MIPS的工作负载所消耗的平均功率量进行优化。
本文公开了用于包含异构的多处理器片上系统(“SoC”)的便携式计算设备中的能效感知热管理的方法和系统的各种实施例。由于该异构的多处理器SoC中的各个处理部件可能在给定的温度,呈现不同的处理效率,因此可以利用能效感知热管理技术(其对各个处理部件在它们测量的操作温度时的性能数据进行比较),以便通过调整针对最低能效处理部件的电源、将工作负载重新分配离开最低能效处理部件、或者转换最低能效处理部件的功率模式,来优化服务质量(“QoS”)。用这些方式,该解决方案的实施例对跨SoC用于处理一个MIPS的工作负载所消耗的平均功率量进行优化。
一种方法包括获得(1402)具有至少一个暴露金属表面的衬底(102、202)。该方法还包括将金属电沉积(1408)到该衬底的至少一个暴露的金属表面上并且在光纤(104、204)的至少一部分周围金属(108、208b)以便将光纤固定到衬底。该衬底和电沉积的金属被配置成从光纤移除热量。该方法还可以包括在牺牲材料(203)周围电沉积(1404)金属(208a)以及移除(1410)牺牲材料来形成通过电沉积的金属的至少一个冷却通道(210)。该光纤可以包括聚合物涂层(506),其中在光纤的端部处的聚合物涂层的一部分(508)被移除。在该光纤的输入端(402)处和该光纤的输出端(404)处衬底和电沉积的金属可以被小面化。光纤可以在衬底上具有盘旋布置。
本发明公开了一种用于机器的控制系统,该机器具有发动机、第一交流发电机、第二交流发电机和后处理系统。控制系统可包括传感器和控制器,传感器与后处理系统相关联并且配置成确定从后处理系统通过的排气的温度,控制器与传感器通信并且能与第一和第二交流发电机连接。控制器可配置成确定第一交流发电机的有效功率输出,确定使排气的温度上升至后处理系统的操作温度所需的发动机的负荷增量,并且在第一交流发电机的有效功率输出大于负荷增量时将第一交流发电机选择性地连接到动力消耗装置以实现负荷增量。控制器还可配置成在第一交流发电机的有效功率输出小于负荷增量时将第二交流发电机选择性地连接到动力消耗装置。