一种方法,包括基于为电池的期望热管理选择的路线来控制电动车辆。电动车辆包括至少一个电池和控制系统,该控制系统配置有用于基于为电池的期望的热管理选择的路线来自动控制电动车辆的指令。
公开了一种用于快速充电电池电动车辆的热管理系统。一种电动车辆热管理系统可包括牵引电池组件、冷却剂回路、热交换器、充电端口组件和控制系统。牵引电池组件可包括热板。冷却剂回路可包括冷却器并且可与热板布置在一起以向热板分配冷却剂。热交换器可与冷却剂回路布置在一起,以在热交换器和冷却剂回路之间进行热连通但非流体连通。充电端口组件可与热交换器流体连通,并且可被构造为从外部源接收冷却剂。控制系统可包括被配置为与外部源通信的控制线路,以监测牵引电池组件、冷却器和外部源的状况,并且基于所述状况指导外部源的操作。
一种根据本发明的示例性方面的电池热管理系统除了别的之外包括,电池组、配置为冷却电池组的冷却剂子系统、和设置在冷却剂子系统中并被选择性地激活以增强电池组的冷却的热电装置。
公开了一种牵引电池热管理系统和方法。一种电池热管理系统包括容纳多个电池单元的内壳体和包围内壳体的外壳体。在内壳体的外表面与外壳体的内表面之间限定流体通道。热管理系统还包括与流体通道流体流动连通的流体循环器,以选择性地使第一导热流体和第二导热流体中的一种循环通过流体通道。
根据本公开的一个示例性方面的车辆充电站,除其他方面外包括,配置为将冷却气流传输给位于电动车辆上的热管理系统的一部分,冷却系统包括风扇和冷却器总成。
本公开内容提供用于电池热管理的系统、方法和装置。在一个或多个实施方式中,公开的方法包括利用至少一个温度传感器感测至少一个电池单元的温度,其中,至少一个电池单元至少部分地浸没在包含在电池壳体内的液体内。方法进一步包括比较至少一个电池单元的温度与最高阈值温度,并且当至少一个处理器确定至少一个电池单元的温度高于最高阈值温度时命令冷却单元激活。此外,方法包括通过至少一个泵使液体经由管道从电池壳体循环至冷却单元并返回到电池壳体。
一种锂离子(Li离子)电池单元,包括外壳。所述外壳包括侧壁,所述侧壁与所述外壳的第一部分连接上并且从所述第一部分延伸以在所述外壳中形成与所述外壳的第一部分相对的开口。所述外壳包括不导电聚合物(例如,塑料)材料。电化学电池元件设置在所述外壳中并且浸没在同样设置于所述外壳中的电解质中。所述锂离子电池单元还包括盖,所述盖包括不导电聚合物材料。所述盖设置在所述外壳的开口上方并且通过密封件来密封所述外壳。所述密封被配置成抵抗或防止水分流入所述外壳并且抵抗或防止所述电解质从所述外壳流出。
一种锂离子(Li离子)电池单元包括棱柱状外壳,所述棱柱状外壳包括由侧壁形成的四个侧面,所述侧壁与所述外壳的底部连接上并且从所述底部延伸。所述外壳被构造成接收并保持棱柱状锂离子电化学电池元件。所述外壳包括不导电聚合物(例如,塑料)材料。另外,散热器由所述外壳的聚合物材料包覆成型,使得所述散热器保持在所述外壳侧面的外部部分中并且沿着所述外壳的底部暴露。
本发明提供用于低轮廓照明系统的系统、方法和设备。在一个方面中,基于LED的光引擎可以固持在常规尺寸和低轮廓两种灯具中,所述基于LED的光引擎可以比常规的光引擎薄和 或轻。在另一方面中,一种光引擎可包含对流和传导两种热传递组件,其效力将基于安装有所述光引擎的灯具的尺寸而变化。
电动车辆中的诸如电能存储设备(例如,电池、超级电容器或超电容器)、电力转换器及 或控制电路等的各种组件的热管理可使用有源温度调整设备(例如,帕耳帖设备),这些有源温度调整设备(例如,帕耳帖设备)可有利地使用由牵引电动马达在再生制动操作期间产生的电能来供电。温度调整可包括使一个或更多个组件冷却或加热一个或更多个组件。该调整可基于各种各样的因素或状况,例如,所感测温度、所感测电流汲取、所感测电压及所感测旋转速度。
一种插座组件(100),包括照明封装件(102)和插座外壳(106),插座外壳(106)具有可移除地容纳照明封装件(102)的容座(104)。热管理构件(108)被耦接至插座外壳(106),且位于容座(104)上,与照明封装件(102)热接合。热管理构件(108)配置为接合热沉(110),从而将热从照明封装件(102)消散至热沉(110)。可选的,插座外壳(106)和热管理构件(108)中的至少一个可以具有配置为将插座外壳(106)安装至热沉(110)的安装元件(142),其中照明封装件(102)可从容座(104)移除,同时插座外壳(106)保持为安装至热沉(110)。热管理构件(108)可耦接至插座外壳(106),以使热管理构件(108)和插座外壳(106)耦接至热沉(110)作为一个单元。