一种燃料电堆汽车的热管理系统和燃料电堆汽车,包括:第一换热回路,第一换热回路用于与燃料电堆换热,第一换热回路可选择性地与设有第一加热器的第一加热器换热管路连通或与设有高温散热器的高温散热器换热管路连通;暖风加热管路,暖风加热管路设有第二加热器,暖风加热管路用于对暖风芯体进行加热,且暖风加热管路可选择性地与第一换热回路连通;第二换热回路,第二换热回路用于与动力电池进行换热;第三换热回路,第三换热回路中设有低温散热器且用于与驱动电机及控制器进行换热。本申请的燃料电堆汽车的热管理系统,工作模式丰富,可满足多种工况下的使用需求,提升客户使用感知。
本发明提供了一种锂离子电池快速充电策略的制定方法,该方法综合考虑了电池析锂及产热两个方面的影响因素。该方法首先以无损检测方式测得电池在不同充电电流下发生析锂的阈值电压。同时,通过在近似绝热环境下测得电池在不同充电电流下的产热速率,并结合电池应用场景的热管理设计中限定的电池允许的最大产热速率,获得对应的电池的最大安全充电电流。然后,以析锂阈值电压及上限使用电压与最大安全充电电流构建电池充电策略可选择的充电电流及对应的截止电压,并以尽量缩短电池充电时间为优选条件,合理设计快速充电策略。
本发明属于混合动力车辆技术领域,公开了一种混合动力车辆热管理系统及混合动力车辆热管理方法。该混合动力车辆热管理系统包括换热器,换热器的内部设置有冷媒通道、发动机冷却液通道及对外冷却通道;电子水泵、电机、电池及对外冷却通道相互连通,形成对外输出水路;机械空调压缩机选择性连通于冷媒通道;电动空调压缩机选择性连通于冷媒通道;蒸发器,其连通于冷媒通道并选择性连通于电动空调压缩机和机械空调压缩机,机械空调压缩机、电动空调压缩机及蒸发器形成冷媒路;发动机冷却管路,发动机冷却管路选择性连通于发动机冷却液通道,形成发动机水路。该混合动力车辆热管理系统生产成本低,占用空间少,节约能量消耗。
一种热交换系统,属于温控领域。它包括干路流道,以及与干路流道两端连通形成流道通路的低效热交换支流道和高效热交换支流道,干路流道的至少一端通过支路流量分配阀门分别与低效热交换支流道、高效热交换支流道管道连通。它能够在低能量损耗的条件下满足热交换效率的需要。一种电池热管理系统,包括可控加热器、泵和前述的热交换系统;干路流道上用于串接电池冷却液盛装室,电池冷却液盛装室用于盛装电池冷却液;低效热交换支流道为低效冷却支流道,高效热交换支流道为高效冷却支流道,可控加热器用于加热电池冷却液,泵用于促成电池冷却液在干路流道内流动。它工作时使用的电池电量小,电池的有效可用电量高。
本实用新型公开了一种动力电池组的热管理系统。该系统包括电池箱、电池箱相对的两侧壁分别开设的进风口和出风口、进风口控制装置和出风口控制装置;进风口控制装置与出风口装置结构相同,均包括伸缩板、齿轮、与齿轮啮合的齿条、定位轴和步进电机,步进电机的输出端与齿轮轴的一端固定连接,齿轮轴的另一端开设有与齿轮轴同轴的柱形空间,定位轴一端插设于柱形空间中,定位轴的另一端与伸缩板固定连接,定位轴与柱形空间间隙配合,齿条固定在电池箱壁上,步进电机通过齿轮和定位轴带动伸缩板展开或折叠,以关闭或打开进风口或出风口。本实用新型结构简单合理,能够改善动力电池组的温度问题,使动力电池的寿命和性能得到进一步的发挥。
本实用新型提供了一种温度分布可时空调制的高功率光纤激光器模块化热管理装置,包括模块化水冷盘(1)、控制模块(2)、控制总线(3)、数据总线(4)和温度快速调控模块(5);模块化水冷盘(1)包括多个光纤调温件(11),以将其上固定的高功率激光器光纤温度调节至指定范值或范围内;温度快速调控模块(5)的数量与光纤调温件(11)相同,与光纤调温件(11)一一对应连接;控制模块(2)通过控制总线(3)连接多个温度快速调控模块(5);控制模块(2)通过数据总线(4)连接光纤调温件(11),用于获取光纤调温件(11)的温度数据,并以此形成控制温度快速调控模块(5)的调控指令。
本实用新型提供了电动拖拉机整机热管理系统及其控制方法,包括动力电池热管理系统、双电机热管理系统。动力电池和双电机热管理系统之间还通过热交换器实现热交换。电动拖拉机整机热管理系统的控制方法包括:拖拉机作业时的动力电池和双电机热管理控制方法,以及拖拉机充电时动力电池热管理控制方法,具体通过设定动力电池温度等级和双电机临界工作温度,以温度传感器测得的动力电池实时温度T和双电机的实时温度T主’、T辅’作为识别参数,并结合拖拉机状态调节拖拉机热管理系统模式。本实用新型确保了动力电池和主、副电机工作在合适的温度,有效降低了电池能量消耗,提高了拖拉机的连续作业时间。
本发明涉及一种纯电动汽车热管理系统,包括压缩机,压缩机分别连接截止阀一、截止阀二,截止阀二通过外部换热器分别连接截止阀七、电子膨胀阀二,截止阀一通过暖风芯体分别连接截止阀七、电子膨胀阀二,电子膨胀阀二连接冷却器二,冷却器二分别连接电子膨胀阀一、截止阀八,截止阀七通过电子膨胀阀一分别连接截止阀三、截止阀四、截止阀五,截止阀三通过外部换热器连接截止阀九,截止阀四连接冷却器一,截止阀五通过蒸发器连接单向阀二,截止阀九、冷却器一、截止阀八分别连接单向阀一,单向阀一、单向阀二分别连接干燥罐;本发明极大地降低了系统能耗,增加了整车续驶里程,且所需零部件减少,能够降低整车成本,节省了布置空间。
本发明涉及一种新型电动汽车用内含热管理系统的电池箱及其工作方法,包括由上而下依次连接的箱盖、上箱体和下箱体;电池箱内由上而下依次连接第一冷却模块、第一电热模块、第二冷却模块、第三冷却模块、第二电热模块、第四冷却模块和底部冷板;底部冷板设有偶数个独立的流道,流道一端为进液口、另一端为出液口,单侧的冷却液进出口交替分布,使得每两个相邻内流道流向相反,以此保证各块电池底部的温均性。本发明的冷却模块采用每相邻两部分冷却液流向相反的方法,使电池前后两部分冷却环境几乎完全相同,大大减小了电池自身每一部分之间的温差。还具有低温加热效果,避免低温条件下电池内阻大、放电效率低等问题,减轻对电池的损伤。
本发明公开了一种应用于大功率激光设备的蓄冷式热管理装置,包括:蓄冷装置,其包括至少一个三层套管,三层套管包括由内至外套设并相连的内层管、中层管和外层管,内层管、中层管和外层管分别用于储存制冷剂、蓄冷剂和载冷剂;制冷装置,其与内层管相连通,且制冷装置用于对制冷剂制冷,内层管中的制冷剂与中层管中的蓄冷剂之间进行热交换完成相变过程,蓄冷剂由液态变为固态,完成冷量的储存;供液循环装置,其与外层管之间相连通,且供液循环装置用于将大功率激光设备产生的废热通过载冷剂传递至蓄冷装置,蓄冷剂与载冷剂进行热交换并释放冷量。
本发明涉及一种车辆的集成热管理系统,并且本发明的目的是改善热管理装置之间的连接性和组件通用性,从而使组件的数量减少而不会降低各个热管理装置的性能。为此,本发明涉及一种车辆的集成热管理系统,该系统:具有制冷剂循环线路用于根据制冷剂的流动方向在按照空调模式或热泵模式下操作时冷却和加热车辆的内部空间,以及电气组件模块侧的冷却水循环线,其用于使冷却水循环通过电气组件模块以冷却电气组件模块,其中,电气组件模块侧的冷却水循环线包括散热器,用于冷却吸收了电子组件模块的余热的冷却水;包括水冷室外热交换器,该水冷室外热交换器用于使循环通过制冷剂循环线路的制冷剂与循环通过电气组件模块侧冷却水循环线路的冷却水交换热;并且具有冷却水流量控制单元,其被配置为控制电气组件模块侧冷却水循环线路中的冷却水的流动,从而使吸收电气组件模块的余热的冷却水和 或由散热器冷却的冷却水循环至水冷室外热交换器。
本发明公开了一种动力电池组的热管理系统。该系统包括电池箱、电池箱相对的两侧壁分别开设的进风口和出风口、进风口控制装置和出风口控制装置;进风口控制装置与出风口装置结构相同,均包括伸缩板、齿轮、与齿轮啮合的齿条、定位轴和步进电机,步进电机的输出端与齿轮轴的一端固定连接,齿轮轴的另一端开设有与齿轮轴同轴的柱形空间,定位轴一端插设于柱形空间中,定位轴的另一端与伸缩板固定连接,定位轴与柱形空间间隙配合,齿条固定在电池箱壁上,步进电机通过齿轮和定位轴带动伸缩板展开或折叠,以关闭或打开进风口或出风口。本发明结构简单合理,能在较为稳定的状态下,改善动力电池组的温度问题,使动力电池的寿命和性能得到进一步的发挥。