本发明公开一种集成于PCB上的电子元器件可控制主动流体散热系统,包括PCB基板、主动流体控制装置、散热装置和流体冷却装置,主动流体控制装置、散热装置和流体冷却装置依次通过流道连接形成闭环,构成液体的自循环。主动流体控制装置是集成于PCB基板上的压电致动流体泵,控制散热系统内部流体流动的流速、流量和流向;散热装置是集成于PCB上的微流道热沉;所述散热装置设置一个、两个或多个,当设置两个或多个时,它们并联或串联在主动流体控制装置于压电致动流体泵之间;液体冷却装置包括集成于PCB上的储液池及设置其上方的散热鳍片或制冷片。该系统适宜于集成于PCB上,能精密操控流体流量、流速和流向,实现大功率高热流密度电子元器件热管理的目的。
本发明涉及一种加热系统的混合动力汽车动力电池的加热系统,该系统综合运用水冷系统、电加热器以及车身排放能量系统,对汽车动力电池的温度进行控制,为动力电池正常工作提供适宜温度,以提升动力电池的工作效率和使用寿命。本发明还公开了一种加热系统的混合动力汽车动力电池的加热方法,其控制逻辑为:判断汽车的工作状态,若为插充电状态则按电池插充电加热模式进行加热控制;若为纯发动机工作状态则按纯发动机工作加热模式进行加热控制;若为纯电动工作状态则按纯电动工作加热模式进行加热控制;若为混合动力工作状态则按混合动力工作加热模式进行加热控制。本方案解决了现有电池加热方式单一不能满足复杂工况下的加热需求的问题。
本发明公开了一种车用动力电池风冷系统及其控制方法和一种设置有该风冷系统的汽车,其控制策略简单、结构简单,而且能够有效降低车用动力电池包内部温差。该控制方法为:当满足第一预设条件时,车用动力电池风冷系统启动;车用动力电池风冷系统启动后,其冷却过程包括往复循环的步骤一和步骤二;步骤一,当满足第二预设条件时,冷却空气由电池箱体的第一通风口进入电池箱体的内部,并从电池箱体的第二通风口流出,第一通风口和第二通风口分别位于电池箱体的两端;步骤二,当满足第三预设条件时,冷却空气由第二通风口进入电池箱体内部,并从第一通风口流出。
本实用新型公开了一种换热强度可调的均温液冷板,属于热管理领域,涉及动力电池热管理、IGBT等电力电子设备冷却问题。它包括盖板7、流道基板8,其中流道基板8采用了一种沿程换热强度可调的流道结构设计,窄端两侧开有流体进出口,分为均流区2、可调换热区3、汇流区4。其中可调换热区3的翅片沿流体流动方向的尺寸可变、排列密集程度依次增加,通过流道结构的改变,增加流体在流道后半段的流速及换热表面,使换热强度沿流动方向依次提高。该发明通过优化液冷板流道结构,避免流体在换热过程中流体热量积累、换热温差降低所造成的换热效果下降的问题,降低了冷却液流量和液冷系统的成本,同时也解决了液冷板换热的均温性和高效性。
本发明公开了一种汽车发动机冷却系统及冷却方法,包括缸体、缸盖、蓄水壶、暖通、散热器、机油冷却器和热管理模块;热管理模块具有控制阀,常通的缸盖水套接口、蓄水壶接口和机油冷却器接口以及通过控制阀可调节接通面积的缸盖过水道接口、暖通接口和散热器接口。冷启动时,使缸盖过水道接口、暖通接口和散热器接口的接通面积都为0;暖机时,使缸盖过水道接口、散热器接口的接通面积为0,使暖通接口的接通面积为100%;热机时,使散热器接口的接通面积为0,使暖通接口、缸盖过水道接口的接通面积为100%;高温时,使缸盖过水道接口、暖通接口和散热器接口的接通面积都为100%。本发明能提高暖机速度和机油升温速度,降低油耗。
本实用新型公开了一种电动汽车电池组热管理设备,包括冷却液进液主管道、冷却液出液主管道以及若干加热冷却单元,所述加热冷却单元包括冷却机构和加热机构。采用以上技术方案的电动汽车电池组热管理设备,设计巧妙,易于实现,结构简单、紧凑,零部件少,稳定可靠,能够高效、稳定地加热和冷却电池组,保证电池组安全可靠地稳定运行。
本实用新型公开了一种用于电动汽车电池组热管理的加热冷却单元,包括冷却机构和加热机构,所述冷却机构包括电池冷却板、与电池冷却板进液端连通的进液集流管以及与电池冷却板出液端连通的出液集流管;所述加热机构包括安装在电池冷却板底面的安装框,在该安装框中并排设置有若干个发热组件,所述发热组件包括发热管和分别位于发热管两侧的翅片条。采用以上技术方案的用于电动汽车电池组热管理的加热冷却单元,设计巧妙,易于实现,结构简单、紧凑,零部件少,稳定可靠,冷却和加热效率高,能够保证电池组安全可靠地稳定运行。
本发明公开一种纯电动车型热管理系统,包括动力电池支路、暖风芯体支路、强电支路、散热器支路和高压电加热器支路。在各支路之间设置五通阀V1,在充电机的下游设置第一三通阀V2、在高压电加热器的上游设置第二三通阀V3、在驱动电机的下游设置第四三通阀V5,该系统可以根据动力电池在不同工况下的冷却需求,通过控制五通阀和各三通阀的工作模式将各支路连通或者断开。在电池有冷却需求时,采用散热器或者空调系统等方式冷却动力电池,降低系统功耗;当乘员舱有采暖需求或者电池有加热需求时,充分利用高压电加热器或者强电支路余热为乘员舱采暖、电池加热。该系统能够最大限度的发挥系统部件的功能,有效利用系统余热,降低功耗、提高续驶里程。
本发明公开一种纯电动车型热管理系统,包括采暖回路、强电系冷却回路、电池冷却回路等。在强电系冷却回路与电池冷却回路之间设置第二三通阀V4,连通两个回路;在采暖回路与电池冷却回路之间设第一四通阀V2,连通两个回路;在采暖回路与电池冷却回路之间设第一三通阀V1,连通两个回路;在电池冷却回路中设置第二四通阀V3,切换冷却液的流向。该系统根据电池冷却回路在不同工况下的冷却需求,采用强电散热器或者空调系统等方式冷却,降低系统功耗;当有乘员舱采暖需求或者电池加热需求时,通过四通阀切换回路,充分利用高压电加热器或强电系余热为乘员舱采暖、电池加热,最大限度的发挥系统部件功能,有效利用系统余热,降低功耗、提高续驶里程。
本发明涉及动力电池领域,为了解决现有的电池热管理中存在有热量浪费的情况,提供了一种车载锂电池管理系统,包括电池箱,电池箱内设置有电池模块,其中,电池箱的一侧开设有进风口,进风口连接有进风管,电池箱的另一侧开设有出风口,出风口连通有收集箱;进风管的进气端伸出汽车位于汽车外部,进风管的出气端与进风口连通,出风口与进气口之间连通有引流管,引流管位于电池模块四周设置,引流管的侧壁上开设有可向外打开的通气孔,引流管内设置有驱动件,驱动件受热可驱动通气孔打开;收集箱设置有隔温层,收集箱的侧壁上设置有可向下开打的第一出口,收集箱底部设置有可向外打开的第二出口,第二出口通过出水管连接有水箱。
本发明公开了一种汽车发动机的冷却系统,包括:发动机水套,发动机水套上设置有第一排水孔和第二排水孔,还设置有循环出水口和循环进水口;热管理装置,固定连通于循环出水口;机械水泵,固定连通于循环进水口;小循环回水管,一端连通于热管理装置,另一端连通于机械水泵;暖风回水管,一端连通于热管理装置,另一端分别连通于第一排水孔和第二排水孔;油冷器回水管,一端连通于热管理装置,另一端连通于机械水泵;大循环回水管,一端连通于热管理装置,另一端连通于机械水泵;冷却器回水管,一端连通于热管理装置,另一端连通于第二排水孔。所述水套冷却系统提高了发动机的冷却效率并降低了发动机油耗,同时减少了发动机故障。
本发明涉及车用动力电池的热管理系统,包括压缩机机组、四通换向阀、冷凝器风扇、外部换热器、电池换热器和电池单元。外部换热器、电池换热器通过管路连接,并通过四通换向阀与压缩机机组和闪蒸中间冷却单元连接;压缩机机组包含两个压缩机,并在它们之间连接闪蒸中间冷却单元,通过控制连接管路上各开关阀的开关,使两压缩机形成串连或并联结构,在制冷工况下,采用并联模式,增强电池的冷却效果;在热泵工况下,采用串联运行模式,并实现双级压缩,使得电池加温效率在低温条件下显著提高。本发明具有独立于车辆本身而对电池进行热管理的特点,解决动力电池在冬季低温条件下面临输出急剧下降的技术瓶颈,同时使得系统开发易于实现模块化和标准化。