本发明提供一种动力电池低温加热系统,属于动力电池领域。所述动力电池低温加热系统包括电芯、电池模组、电池箱体、电池管理系统、热管理系统、高低压接插件及线束;其中:多个所述电芯与保护电路板构成所述电池模组,多个所述电池模组、线束、电池管理系统和热管理系统构成电池,电池外设置有电池箱体,电池箱体上设置有高低压接插件。本发明通过传热,将电芯的整体温度提升,电池管理系统通过检测电池组中各单体电池的状态来确定整个电池系统的状态,并根据它们的状态对动力电池系统进行对应的控制调整和策略实施,实现对动力电池系统及各单体的充放电管理以保证动力电池系统安全稳定地运行。
本公开提供一种能量分配装置和车辆,以解决相关技术中长下坡行驶时车辆制动能量不能持续耗散的问题。本公开实施例提供一种能量分配装置,所述能量分配装置包括获取模块、能量消耗模块以及与所述获取模块相连的控制模块;所述获取模块用于,获取车辆的电制动系统的回馈功率;能量消耗模块包括若干消耗子模块以及能量耗散模块;所述控制模块用于,根据所述回馈功率大小,以及所述若干消耗子模块以及能量耗散模块的需求功率大小,按照预设优先级顺序进行能量分配,在所述预设优先级顺序中,所述能量耗散模块的优先级顺序最低。
本发明提供一种依靠燃料电池热量作为液氧汽化动力的多燃料电池模块联用的热管理系统和方法。本发明适用于采用静态排水技术的燃料电池系统。液氧不能直接被燃料电池利用,需要热量将其汽化成氧气后方可利用。采用静态排水技术的燃料电池模块,要求氧气通路与水路压力差保持稳定且精准可控。为保证多模块联用情况下各模块水路压力不互相干扰,本发明将每个燃料电池模块与两个单独的热交换器串联后组成单模块级别的一级热循环回路,每个模块所串联的两个热交换器再分别组成两个二级热循环回路,即将燃料电池的热量分为了两部分,一部分用于液氧汽化,另一部分通过散热器散掉。
本发明提供一种依靠燃料电池热量作为液氢汽化动力的多燃料电池模块联用的热管理系统和方法。本发明适用于采用静态排水技术的燃料电池系统。液氢不能直接被燃料电池利用,需要热量将其汽化成氢气后方可作为燃料电池的燃剂。采用静态排水技术的燃料电池模块,要求水路压力稳定且精准可控。为保证多模块联用情况下各模块水路压力不互相干扰,本发明将每个燃料电池模块与两个单独的热交换器串联后组成单模块级别的一级热循环回路,每个模块所串联的两个热交换器再分别组成两个二级热循环回路,即将燃料电池的热量分为了两部分,一部分用于液氢汽化,另一部分通过散热器散掉。
本发明实施例提供一种储能电池系统及其电池热管理系统,该储能电池系统包括:箱体、空调系统和若干列储能电池柜,每列储能电池柜的预设位置处均设有空调系统的空调室内机,每列储能电池柜对应一个主风道;各列储能电池柜、空调室内机和各个主风道设置在箱体内,每列储能电池柜均包括若干个储能电池柜,每个储能电池柜内均安装有若干个电池插箱,每个电池插箱内均安装有电池芯组件;每个储能电池柜均具有连通风道,每个空调室内机吹出的空气经过相应主风道的进风口和排风口输送到相应储能电池柜的连通风道,再通过连通风道送入电池插箱内部。本实施例提供的系统能够实现均匀送风,对电池芯体散热效果好,提高散热效率。
本发明公开了一种柔性高强芳纶纳米纤维基复合电热膜,包括银纳米线,银纳米线均匀嵌在芳纶纳米纤维基体表面,芳纶纳米纤维与银纳米线相互连接形成高效导电网络作为电发热载体。本发明还公开了上述复合电热膜的制备方法,该方法制得的电热膜具有良好的柔性、宽的发热温度范围、快速响应及优异的耐热型和力学性能,满足在可穿戴热疗、个人热管理、除雾除冰、交通取暖、军用加热设备和人工智能等领域的应用。
本发明公开了一种用于方程式赛车的发动机电控热管理装置及控制方法,涉及发动机冷却技术领域,包括电子水泵,电子风扇,电磁阀,控制器,发动机电控单元ECU,散热水箱,冷却管路及管接头,导流罩和溢流瓶。本发明主要通过电子水泵和电子风扇的联合电子控制对发动机各工况下冷却水温度进行精确调控,使冷却水温度稳定在最佳温度区间,从而提升发动机燃油经济性、冷启动性能、变工况下的发动机工作稳定性和可靠性,同时使用比例电磁阀调节机油冷却循环的冷却水流量,使机油温度维持在最佳温度区间。硬件方面采用创新的碳纤维导流罩和固定耳片设计,提高散热水箱散热效率同时实现轻量化,优化冷却系统布置,提升赛车整体性能。
本发明提供了一种电动汽车预加热控制方法、装置及电动汽车,该电动汽车预加热控制方法包括:获取用户所需最小剩余里程;获取电动汽车的动力电池的当前剩余电量,并根据当前剩余电量计算得到第一行驶里程,其中所述第一行驶里程为所述电动汽车通过当前剩余电量所能行驶的距离;在所述第一行驶里程大于所述最小剩余里程时,控制所述电动汽车的加热模块对所述动力电池进行加热。本发明将车辆的剩余里程作为能否对电动汽车进行加热的衡量标准,可以避免在动力电池的剩余电量不足以满足用户使用需求时,还要对电动汽车进行加热,从而影响整车的正常使用。
本发明提供一种电池热管理系统及储能集装箱。其中,电池热管理系统包括:控制装置、冷却装置以及温度传感器;温度传感器设置在电池模块上,用于检测电池模块的温度,并发送温度信号给控制装置;冷却装置包括制冷器以及风道,制冷器的出风口与风道的进风口连通,风道的出风口设置在电池模块上;控制装置分别与温度传感器和制冷器电连接;控制装置根据温度信号控制制冷器的工作状态。本发明控制装置根据温度信号判断电池模块的温度,进而控制制冷器工作产生冷却气体,通过风道释放到电池模块上,对电池模块进行有效降温和散热,降温效率高,满足电池模块的降温要求,保证电池有效工作,避免电池模块温度较高影响储能集装箱的使用寿命。
本发明提供一种储能柜用电池热管理装置,该储能柜用电池热管理装置包括:冷却部件、储能柜柜体、至少一个电池模组及高压箱,至少一个电池模组中的每一个电池模组均与高压箱连接,且至少一个电池模组和高压箱均设置在储能柜柜体的内部,冷却部件设置在储能柜柜体的内部,且与至少一个电池模组和高压箱间隙设置;其中,冷却部件用于向至少一个电池模组和高压箱输入冷却气体,以通过冷却气体降低电池模组和高压箱的温度。本发明提供的储能柜用电池热管理装置,提高了储能柜内的换热效率,并延长储能柜的循环使用寿命。
基于热管理的电动汽车空调系统,包括电动压缩机、车外换热器、节流电子膨胀阀、车内换热器、第一电磁阀、电池冷却单元、电机冷却单元、控制器冷却单元、第一变频水泵、第二变频水泵、水箱、第二电磁阀;所述的电动压缩机、车外换热器、节流电子膨胀阀、车内换热器、电动压缩机依次连接并形成第一回路;所述的电池冷却单元、电机冷却单元、控制器冷却单元并联;优点是,避开了一般电动汽车热泵空调系统制热模式结霜及制热模式与除霜模式相互切换带来的冷凝水雾化问题,保证了汽车的安全驾驶,同时冬季制热模式未消耗燃料电池蓄存的电能,比现有电动汽车热泵空调系统更节能,可以有效延长续航里程。
本发明涉及一种高比能量航空用燃料电池发电系统,特别是以液氢为燃料的航空用质子交换膜燃料电池发电系统,包括液氢储罐、缓冲罐、压力传感器、氢气减压器、水用电磁阀、氢气用电磁阀、质子交换膜燃料电池、空气泵、循环水泵、水箱、温度调节器、热交换器等。以燃料电池自身热量为液氢储罐提供热源实现液氢气化,以空气中的氧气作为氧化剂,以航空器外部的高速来流空气作为冷介质,将燃料电池多余热量散去。本发明与传统的高压气瓶储氢方式的航空用燃料电池发电系统相比,具有储氢量大、重量轻、体积小、工作压力低、安全可靠、燃料加注速度快、燃料加注方式简单等优点,尤其适用于有长航时需求、重量和体积要求的航空用燃料电池发电系统。