一种方法包括:针对多个电池单元中的给定电池单元估计内阻;针对给定电池单元估计开路电压;确定给定电池单元的目标输出电压;确定给定电池单元的目标放电电流;基于所估计出的给定电池单元的开路电压、给定电池单元的目标输出电压和给定电池单元的目标放电电流来确定给定电池单元的目标内阻;基于给定电池单元的目标内阻来确定给定电池单元的目标单元温度;以及基于给定电池单元的目标温度来控制与给定电池单元相邻的冷却剂流。
一种基于CFD软件优化动力电池包温度分布的方法,它包括有参数数据单元,其技术要点是:所述参数数据单元通过数据转换单元与一维CFD仿真计算单元输入端连接;动力电池系统CAD数据单元分别与一维CFD仿真计算单元和三维CFD仿真计算单元相连接,三维CFD仿真计算单元通过结果数据处理单元与一维CFD仿真计算单元相连接;一维CFD仿真计算单元输出端依次通过结果数据处理单元、MATLAB程序控制单元与加热系统和散热系统执行单元相连接;加热系统和散热系统执行单元输出端再与一维CFD仿真计算单元输入端相连接。本发明通过一维流体热仿真与MATLAB的耦合计算,实现了联合仿真计算,提高了仿真的效率,实现了虚拟硬件在环仿真。
本发明公开了一种电动汽车热泵空调与电池组热管理系统,包括压缩机、车外换热器、车内换热器、车内冷凝器、气液分离器、风道、电池组。其通过在电池组和热泵空调的风道之间设置第一连接风道和第二连接风道,室外温度较高时,可以利用热泵空调给电池组送入冷风从而对电池组进行降温,防止电池组温度过高,保证电池的高效安全运行,室外温度较低时,可以利用热泵空调给电池组送入热风从而对电池组进行快速预热,防止电动汽车启动时电池组的内阻急剧升高,电池组温度达到性能要求后,电池组将产生额外的热量并传送到热泵空调的风道中,减小了热泵空调所需的制热量,进而降低了热泵空调系统的耗电量。本系统耗电量小、续驶里程长、系统安全性高。
本申请提供了一种温度控制系统和方法,应用于电动汽车,通过在传统的电动汽车中增设热管理控制器、整车控制器、散热器、电子水泵、水温传感器,并通过冷却管道将散热器、电子水泵、水温传感器、充电机、交直流逆变器、电机控制器以及电机依次连接起来,利用该冷却管道内充满的冷却液以及散热器内的风扇,降低电动汽车工作过程中上述各部件内部温度,具体的,根据预设控制规则以及实时检测到的上述各部件的当前温度,控制风扇的转速以及电子水泵运转的占空比,从而避免了该电动汽车内温度过高,而影响各部件的工作效率以及使用寿命,保证了该电动汽车安全可靠工作。
本实用新型提供了一种应用反补偿消热设计的红外探测装置,保证了红外探测装置在外界温度在一定范围内变化时,光学系统整体焦距不变或者变化很小,从而保持良好的成像质量。该红外探测装置还包括温度补偿筒,所述红外镜头整体同轴向设置于温度补偿筒内,且镜筒与温度补偿筒之间是在靠近红外热像仪一端的位置刚性连接;温度补偿筒的材料的膨胀系数保证在外界温度在-40°~+60°范围变化时温度补偿筒的轴向伸缩与红外光学系统产生的后截距的变化大小相同,方向相反。本实用新型设计简便,可应用于任一红外光学系统之中,补偿效果优良;可靠性较高,可以应用在航空航天等力学环境、温度环境较为恶劣的环境下。
本实用新型公开了一种具有热管理单元的电池组,包括壳体和容置于壳 体内的电池,所述电池组还包括热管理单元,所述热管理单元包括设于壳体 内的热管理装置。本实用新型电池内的温度可以由热管理单元迅速带走,使 得电池组工作稳定;同时在电池组温度过低时,还可以对其进行加热,使得 电池组的应用更加广泛并延长了电池组的使用寿命。