提供一种用于牵引电池热管理系统的蠕动泵。还提供包括电池单体阵列、管系统和发射器的电池总成。管系统可以输送用于与阵列热连通的冷却剂并且可以形成具有壁的通道,壁具有电介质或磁性微粒。发射器的位置可以接近壁并且配置用于选择性地输出对微粒施加压缩力的磁场、电场或电压以调节通道的横截面积来控制通过通道的冷却剂的流动。通道可以是基于树脂的柔性管。总成还可以包括传感器和控制器。控制器可以配置用于基于来自传感器的指示总成或系统的状况的信号而启用发射器。
描述一种用于确定电蓄能器的热管理系统的状态的方法,其中所述电蓄能器具有至少一个电蓄能器单元和与所述至少一个电蓄能器单元处于热接触的至少一个冷却板。该方法包括步骤:a)基于电蓄能器单元的所确定的第一温度值来计算针对所述至少一个电蓄能器单元的第二温度值;b)基于电蓄能器单元的所确定的第一温度值来计算针对所述至少一个电蓄能器单元的第三温度值;c)至少基于所计算的第二温度值和所计算的第三温度值来确定针对所述至少一个电蓄能器单元的所述热管理系统的状态,其中所述状态包括所述热管理系统的热缺陷。此外描述一种相应的设备、相应的电蓄能器单元、相应的计算机程序和相应的机器可读的存储介质。
一种用于操作发动机的永磁电机的方法,该方法包括:确定永磁电机的故障状况;响应于确定永磁电机的故障状况,通过增加一个或多个永磁体的温度来减小永磁电机的一个或多个永磁体的磁性。
示例性总成包括在第一位置和第二位置之间可移动的混合结构。混合结构在第一位置容许第一空气流。混合结构在第二位置容许第二空气流。第一空气流包括比第二空气流更多的已经移动穿过电动车辆的发动机舱的空气。
本发明公开了一种电池组件。所述电池组件包括按阵列方式布置的多个电池单体和多个翅片。每个电池单体具有靠着所述多个翅片设置的侧部。每个翅片限定具有入口和出口以及横跨所述多个电池单体延伸的多个平行管部的蛇形流体通道,使得所述多个平行管部的长度从所述入口向所述出口增大。靠近所述出口的所述平行管部中的至少一个平行管部的长度比所述多个电池单体的宽度大,靠近所述入口的所述平行管部中的至少一个平行管部的长度比所述多个电池单体的宽度小。
披露了一种流体装置,该流体装置包括适于输送循环流体的封闭通路。该封闭通路包括流动单元,该流动单元具有第一电极和在该循环流体的流动的下游方向上与第一电极偏移的第二电极。该第一电极形成为网格结构并且被布置成允许该循环流体流过该第一电极。该流体装置可以用于控制或调节在该封闭通路中循环的流体的流动,由此充当打开、减小或甚至关闭通路的阀门。
公开了一种用于电感器热管理的蠕动泵。一种车辆电感器组件包括电感器、热板、发射器和控制器。电感器固定在壳体内。热板支撑电感器并包括具有柔性壁的通道,所述柔性壁具有可行动的颗粒。发射器位于通道附近。控制器被配置为:启用发射器以对颗粒施加力而使柔性壁运动,从而调节通道的横截面积以影响流经通道的冷却剂的流量。柔性壁可以是部分地固定至通道的内部并包括可行动的颗粒的膜。可行动的颗粒可以是电介质颗粒和磁性颗粒中的一种,发射器可选择性地输出电压、电场或磁场以使电介质颗粒或磁性颗粒运动,从而膜运动以调节通道的横截面积,进而影响流经通道的冷却剂的流量。
提供具有外部热管理系统的电池系统与模块。在一个实施方案中,电池模块包括外壳和配置在外壳中的至少一个电化学电池。电池模块还包括具有与至少一个电化学电池接触的第一侧的热界面。电池模块还包括与热界面的第二侧接触的散热器。热界面用于使热量能够从至少一个电化学电池传递到散热器。
本发明涉及一种用于电池组(1)的主动式热管理系统,其包括:至少一个开口(9,9′),所述至少一个开口开设在电池组(1,1′)的用于容置电池单元(7,7′)的壳体(2,2′)上;以及至少一个真空装置(3,3′),所述至少一个真空装置与壳体(2,2′)的内部流体连通以能够向外抽取所述壳体(2,2′)中的空气。主动式热管理系统还包括至少一个密封门(5,5′),所述密封门配置成能够根据所述真空装置的操作状态来打开或关闭所述开口(9,9′)。本发明还涉及上述主动式热管理系统的运动方法以及包括上述主动式热管理系统的电池组。根据本发明,电池组可以在任何环境温度下以理想的温度区间运行。
提供一种用于电力电子组件的蠕动泵。电力电子组件可包括电力电子装置、封装组件、热管理系统和发射器。封装组件支撑电力电子装置。热管理系统支撑封装组件并包括输送用于与所述电力电子装置热连通的冷却液的热板。热板限定具有壁的通道。发射器与壁布置在一起以形成蠕动泵,蠕动泵调节通道的横截面积以控制流经通道的冷却液的流动。膜可部分地固定到壁并包括介电颗粒或磁性颗粒。发射器可选择性地输出电压、电场或磁场以在所述颗粒上施加力,以使膜运动并调节通道的横截面积,从而控制流经通道的冷却液的流动。
公开了一种牵引电池支撑组件。提供了一种包括堆叠的棱柱形罐壳体的阵列和支撑结构的车辆牵引电池组件。每个罐壳体可限定用于容纳电池单元的空腔和多叉梳形基座。支撑结构支撑所述壳体。支撑结构和所述基座限定在二者之间被构造用于冷却剂从中流过的通道。每个罐壳体的通向所述通道的下部可以是介电材料。介电层可跨越罐壳体的长度并且可位于所述通道上方。每个罐壳体可限定第一定位特征,该第一定位特征具有与相邻的罐壳体的第二定位特征结合的尺寸以使罐壳体对齐。
本发明提供一种燃料电池系统热管理方法,该燃料电池系统包括燃料电池堆,该方法包括:向所述燃料电池堆通入助燃气体并调节所述助燃气体的温度;通过所述调节了温度的助燃气体和燃料电池堆进行热交换,使燃料电池堆温度在各工作阶段处于预设的温度范围内。该燃料电池系统热管理方法能很好的利用废热能、废燃料气体,并且能很好的对燃料电池进行热管理。