一种具有温差控制功能的电池组风冷散热系统及其热管理方法。属于电池组散热管理技术领域。本发明将电池组划分为多个始末两端安装风机的电池区间,根据电池组放电电流是否达到阈值电流来判断是否进行温差判断;进一步根据电池组各区间温度与进风口位置温度的差值是否超出额定温差来判断是否开启对应风机运行以实现热管理。本发明在传统温度控制的基础上引入电流控制条件,并将后者作为判断温差以运行风机的前提条件,使得电池组能够根据电池的工况自发、实时调整风机工作模式,实现散热的同时有效控制电池组内温差,并且能显著降低能耗。本发明风冷系统散热效果好、节能、高效,通用性强,热管理方法简单易操作,有利于大规模应用推广。
本发明涉及一种用于LED照明灯的热管理系统,包括离子风发生装置、电加热装置和LED照明装置;所述离子风发生装置设有进风口和出风口;所述电加热装置处于所述出风口的后侧,其通过加热电路连接外部电源并获得转换成热能的电能;所述LED照明装置处于所述电加热装置的后侧;在所述LED照明装置上设有实时监测所述LED照明装置的温度的温度传感器,在所述加热电路上设有根据所述温度传感器的监测结果来调节所述加热电路的电压,进而改变所述电加热装置输出的热能的温度控制器。该系统有效解决离子风发生装置在低温环境下缺少升温功能的问题,在不同情况下进行系统工作状态的切换,实现了对LED照明装置的热管理,提高了LED照明灯的寿命和可靠性。
本实用新型提出了一种用于电子设备热设计的实验教学装置,旨在提供一种高效可靠且能全面引入各散热性能影响因子的教学实验平台,包括实验控制台和多个实验平台;实验控制台包括第一无线通信模块和操控模块,其中:第一无线通信模块用于建立操控模块与实验控制板的数据通信,操控模块用于调节实验参数、实时显示各测温点温度曲线图及总体温度分布云图、导出历史实验数据以及电子版实验报告单;实验平台包括实验箱、实验控制板和电源模块,其中:实验箱包括带有不同栅格孔的通风挡板和用于加热、散热、预紧及测温的功能模块,实验控制板用于控制上述功能模块,电源模块用于向实验控制板及上述功能模块提供电能。
本发明提出了一种用于电子设备热设计的实验教学装置,旨在提供一种高效可靠且能全面引入各散热性能影响因子的教学实验平台,包括实验控制台和多个实验平台;实验控制台包括第一无线通信模块和操控模块,其中:第一无线通信模块用于建立操控模块与实验控制板的数据通信,操控模块用于调节实验参数、实时显示各测温点温度曲线图及总体温度分布云图、导出历史实验数据以及电子版实验报告单;实验平台包括实验箱、实验控制板和电源模块,其中:实验箱包括带有不同栅格孔的通风挡板和用于加热、散热、预紧及测温的功能模块,实验控制板用于控制上述功能模块,电源模块用于向实验控制板及上述功能模块提供电能。
本发明属于信息控制技术领域,提供一种高性能多核微处理器的动态热管理方法,用以克服现有技术中温度与性能控制误差较大的问题;本发明基于模型预测控制结合任务迁移及动态电压频率调节,利用模型预测控制方法,根据用户定义的目标温度分布目标来计算出对应的所需功率输入分布,然后通过执行任务迁移与动态电压频率调节来对现有的功率分布进行校正,以匹配前部计算得出的所需输入功率分布。本发明成功综合了任务迁移,动态电压频率调节以及模型预测控制方法的优势,能够高效地最优化处理器性能的同时,最小化多核芯片核心间的温度差异,追踪用户定义的目标温度分布。
本发明涉及微处理器领域,涉及微处理器热分布估计,具体为一种微处理器快速瞬态热分布估计方法,用以克服现有技术中温度估计计算延迟较大、温度估计误差较大的问题,本发明提供一种快速高精度的微处理器瞬态热分布估计方法,该方法利用微处理器上的性能计数器估计出微处理器各部件的功耗,通过微处理器紧凑热模型计算出微处理器的热分布,同时结合片上物理热传感器的读数以及微处理器各功能模块的功耗相关性,对热估计进行反馈校正,从而得到微处理器的精确热分布。