本实用新型公开了一种电池包的温度管理系统,属于电动车或混合动力车的电池包温度管理技术领域。其包括用于加热电池包(1)的风冷系统(2)以及用于冷却电池包(1)的液冷系统(3)。当电池包温度过低需要升温时,利用风冷系统的暖风为电池包升温效率高;当电池包温度过高需要降温时,冷却液通过热交换为电池包降温,效率较高。可见,通过风冷系统进行暖风加热、液冷系统进行液体冷却方式共同管理电池包温度,提高电池包热管理效率,从而提高电池包在低温和高温下的功率效率,满足整车需求。解决了现有电池包温度管理系统冷却及加热效率较低的技术问题。
本发明公开了用于车辆的热管理系统及方法,可以包括提供发动机、变速器、散热器、以及恒温器。第一热交换器可以与变速器流体连通,以加热或冷却变速器流体。热分支管路可以从发动机延伸至第一热交换器,以将发动机冷却剂供应至第一热交换器。热分支管路可以与发动机和第一热交换器中的每个流体连通。热交换器返回管路可以与第一热交换器和恒温器的入口中的每个流体连通。
本发明提供了一种动力电池热管理系统及方法,涉及汽车动力电池技术领域。该系统包括:采集模块,用于实时采集电池对外输出的电流值和电池温度值;预测模块,用于预测电池的温升状态,并依据所述温升状态判断是否进入提前开启散热模式;第一和第二控制模块,分别用于控制电池散热装置。本发明通过预测预设时间段后电池的状态,进而预估预设时间段后的最高温度,能在电池温度升高前,提前进行降温处理,使电池能够保持合理的温度内,减少由于温度的滞后性,导致电池温度升高后,才进行降温的影响。更有效的进行电池热管理,确保电池高效率、长寿命运行。
本实用新型公开了一种基于均衡触发式锂电池物理保护器,包括受温度控制的断路保护开关和电池检测模块,电池检测模块包括一电压采集单元,电压采集单元分别与MOS管的栅极、第一、第二三极管的基极连接,MOS管的漏极和连接电压采集单元正极,MOS管的源极通过发热单元连接电压采集单元负极,发热单元贴合在断路保护开关的一侧,第一、第二三极管的发射极相互连接,第一、第二三极管的集电极之间串联由第一、第二电阻,第一、第二三极管的集电极与控制器或充电器连接。本实用新型将电池均衡技术和保护触发技术合二为一,形成简单可靠,均衡效果突出,安全保护周全的锂电池保护器,可以有效控制温度异常,大幅提升电池的使用寿命,保证电池的容量。
本实用新型所述的一种多级热管理动力电池组,涉及电池领域。所述多级热管理动力电池组包括至少一个电池箱,设置在电池箱中的至少一个电池区,放置在各电池区中的至少一个电池单体;还包括一冷却管,以及设置在各所述电池区中的循环部件,各循环部件彼此并联,并各自连接在所述冷却管上将冷却管中的冷却液导入各电池区,循环部件还用于控制冷却液在电池区中的循环流动。将众多电池单体分别放置在不同的电池区中,再在各电池区中设置控制冷却液循环流动的循环部件,对各电池区分别进行热管理,有效简化了热管理系统,降低了热管理难度,提高热管理的效率。而且,将电池单体分区设置,弱化了电池单体之间的影响,提高了所述多级热管理动力电池组的安全性能。
公开了具有热管理特征的印刷线路板和包括相同印刷线路板的热管理装置。印刷线路板包括绝缘基底、至少部分嵌入所述绝缘基底的电导体和至少部分嵌入所述绝缘基底的热导体。印刷线路板还包括温度不敏感组件安装区域和温度敏感组件安装区域。所述绝缘基底和所述热导体被安置在邻近所述温度敏感组件安装区域的目标热传递区域以及处于与所述温度敏感组件安装区域隔开位置的大块区域中。
本发明涉及具有热管理特征的复合层及包括该复合层的热管理装置。根据本公开的传热管理装置包括具有绝缘体衬底和至少部分地嵌在绝缘体衬底中的热导体的复合层、耦合到复合层的温度敏感部件以及耦合到复合层并且远离温度敏感部件的温度不敏感部件。温度不敏感部件在操作过程中产生热量。热导体和绝缘体衬底布置到接近温度敏感部件的目标传热区域和接近温度不敏感部件的体区域中。目标传热区域和体区域彼此有热连续性。
本实用新型公开了一种柴油机电控热管理系统。该柴油机电控热管理系统包括:ECU;转速传感器;油门位置传感器;温度传感器,与ECU的输入端连接,用于探测柴油机的水箱进出水温度,中冷器进出气温度和大气温度,并将该探测数据传给ECU;压力传感器,与ECU的输入端连接,用于探测柴油机的中冷器进出气压力和大气压力,并将该探测数据传给ECU;电控节温器与ECU的输出端连接,使其阀门开度实现电控控制;以及,电控风扇与ECU的输出端连接,使其转速实现电控控制。该柴油机电控热管理系统随着柴油机工况和环境状态的变化,ECU自动调节冷却系统节温器,风扇的参数,水温始终稳定在最佳目标温度附近,达到精确控制水温,延长柴油机寿命,降低柴油机的油耗和排放。
本发明公开了一种基于均衡触发式锂电池物理保护器,包括受温度控制的断路保护开关和电池检测模块,电池检测模块包括一电压采集单元,电压采集单元分别与MOS管的栅极、第一、第二三极管的基极连接,MOS管的漏极和连接电压采集单元正极,MOS管的源极通过发热单元连接电压采集单元负极,发热单元贴合在断路保护开关的一侧,第一、第二三极管的发射极相互连接,第一、第二三极管的集电极之间串联由第一、第二电阻,第一、第二三极管的集电极与控制器或充电器连接。本发明将电池均衡技术和保护触发技术合二为一,形成简单可靠,均衡效果突出,安全保护周全的锂电池保护器,可以有效控制温度异常,大幅提升电池的使用寿命,保证电池的容量。
本发明提供热能引导系统以及制造热能引导系统的方法。热能引导系统包括以及与热能源的表面热连通的各向异性热引导涂层。各向异性热引导涂层包括多个层,所述多个层包括第一层和第二层。第一层具有第一热传导率,第二层具有第二热传导率。所述多个层不均匀地布置在热能源的表面上,以便根据热能管理目标从热能源引导热能。
本发明公开了一种柴油机电控热管理系统。该柴油机电控热管理系统包括:ECU;转速传感器;油门位置传感器;温度传感器,与ECU的输入端连接,用于探测柴油机的水箱进出水温度,中冷器进出气温度和大气温度,并将该探测数据传给ECU;压力传感器,与ECU的输入端连接,用于探测柴油机的中冷器进出气压力和大气压力,并将该探测数据传给ECU;电控节温器与ECU的输出端连接,使其阀门开度实现电控控制;以及,电控风扇与ECU的输出端连接,使其转速实现电控控制。该柴油机电控热管理系统随着柴油机工况和环境状态的变化,ECU自动调节冷却系统节温器,风扇的参数,水温始终稳定在最佳目标温度附近,达到精确控制水温,延长柴油机寿命,降低柴油机的油耗和排放。
本实用新型提出一种用于混合动力汽车的热管理系统,混合动力汽车包括电机动力系统和发动机动力系统,用于混合动力汽车的热管理系统包括:第一水泵;第一控制阀;第二水泵;第三水泵;第一加热器;第二加热器和控制器。本实用新型可通过控制第一水泵、第二水泵、第三水泵和第一控制阀以使第一加热器对电池子系统进行加热,并在发动机工作时利用发动机冷却水的余温来给电池子系统加热,保证电池在低温下的性能。同时,还可以不利用发动机水循环,无需启动发动机,保证了混合动力汽车在纯电动工况下的节能性,提升了混合动力汽车的节能性和环保性。