本实用新型公开一种基于液体介质的电动汽车锂电池热管理系统,属于电动汽车技术领域,解决现有的液冷形式的锂电池热管理系统无法均衡维持锂电池组温度的问题,本案的锂电池热管理系统包括第一冷却水箱、第二冷却水箱、电池组箱以及控制单元,本案通过设置两个冷却水箱和一个电池组箱的结构,通过在电池组箱内设置加热元件给电池组箱内的锂电池进行加热,通过在电池组箱内设置内部冷却水管从而将两个冷却水箱中的冷却液彼此循环输送,起到给电池组箱内的锂电池组循环制冷的作用,通过设置控制单元以及在电池组箱内设置温度传感器,加热和制冷相互独立,能够实现均衡维持锂电池温度的目的。
本实用新型提供了一种软包电池膨胀吸收装置及电池模组,涉及电池技术领域。通过可以设置在电池模组中的可以发生形变的膨胀吸收结构,吸收软包电池因为膨胀产生的形变,同时通过设置在膨胀吸收腔体内部的膨胀吸收结构的形变实现对软包电池膨胀的吸收。此外,还通过设置进液口和出液口使膨胀吸收腔体可以流通液体,实现对软包电池的热量管理,提高软包电池模组的热量管理效果。本申请实施例中的膨胀吸收装置整体结构简单,能够吸收软包电池模组中出现电池膨胀时的形变,使软包电池膨胀时不会因为电池模组的其他结构造成损坏,保证软包电池模组的成组安全。
本发明提供了一种混合动力车辆冷却系统及混合动力车辆,属于整车冷却领域,冷却系统包括发动机冷却回路、变速器冷却回路和电池模块冷却回路;各冷却回路能够通过热管理模块相互连通;并通过热管理模块与散热器相连;热管理模块通过监测电池模块、发动机和变速器的状态信号,判断整车行驶状态,确定预置信号,然后根据各个温度传感器的测量结果进行修正,确定输出信号,调节各冷却回路的冷却水流量。本发明将发动机冷却回路、变速器冷却回路和电池模块冷却回路集成进行统一控制,有效地利用了电池模块的热负荷,提供了发动机和变速器起动时的温度,降低了整车的排放及油耗,同时,通过独立控制各冷却回路,降低了整车热损,提高了整车可靠性。
本发明实施例提出了一种集装箱数据中心环境散热管理系统和方法,该系统包括温度管理模块、空调子系统和机柜子系统,温度管理模块用于对空调子系统和机柜子系统控制管理。温度管理模块为第一MCU、第二MCU或中央处理单元,温度管理模块通过Wifi与所述空调子系统和机柜子系统通信。温度管理模块实时采集空调子系统和机柜子系统中的相关参数,对相关参数进行实时运行,计算出装箱内部温度目标值和散热风扇转速目标值,该目标值为适合的空调运行温度(散热功率)和数据中心服务器的散热风扇转速,以此来控制空调子系统中的空调转速和机柜子系统中的散热风扇转速。有效的提高了集装箱数据中心的散热效率,节省了电力资源。
本发明涉及一种车辆热管理方法、系统及车辆,车辆热管理方法包括:依次判断车辆内每个空间的温度是否符合相应的第一预设温度条件;对不符合第一预设温度条件的空间的温度进行调整;依次判断每个空间内各个预设区域的温度是否符合相应的第二预设温度条件;对不符合第二预设温度条件的空间的温度进行调整。本发明实施例通过依次判断车辆内各个空间的温度是否符合相应的第一预设温度条件,并对不符合预设条件的空间的温度进行调整,而后对各个空间内的各个区域的温度是否符合相应的第二预设温度条件,并对不符合预设条件的空间的温度进行调整,实现了对车辆内各个空间的温度对应控制,保证各个空间的温度的舒适性以适宜不同的使用环境。
本发明提供了一种雾化蒸发动力电池热管理系统,包括:动力模块、雾化模块、电池模组、传感器和控制模块;控制模块分别与动力模块、雾化模块连接,且通过传感器与电池模组连接;雾化模块的输出端与电池模组的进气口连接,动力模块设置于雾化模块的输入端或电池模组的排气口处;当控制模块通过传感器反馈的电池状态参数确定电池模组需要散热时,控制动力模块、雾化模块工作,使得雾化模块产生气雾双流,动力模块产生气雾双流流向电池模组的动力,因此能够通过气雾双流对电池模组进行散热,具有高散热效率。
本实用新型旨在提供一种稳定、高效且使各设备运行在稳定的温度范围内,提高动力系统各电器件性能及使用寿命的纯电动客车自循环热管理系统。本实用新型对整车动力及储能系统热平衡而展开,增加了两个三向电磁阀、管路及控制逻辑,使整车电池及动力系统散热在系统内循环,在不增加额外功率消耗的同时,达到稳定、高效的运行,使各设备运行在稳定的温度范围内,提高动力系统各电器件性能及使用寿命。本实用新型可应用于汽车领域。
本发明公开了一种燃料电池汽车热管理系统,包括氢燃料电池电堆、氢气催化燃烧反应器、电加热器、变频风扇、补水箱、变频水泵、去离子装置、颗粒物过滤器、旁通阀、温度传感器和控制器。本发明公开了一种燃料电池汽车热管理系统的控制方法。
本发明公开了一种车辆冷热管理系统。车辆冷热管理系统包括发热源、空调箱总成、冷凝器、压缩机以及可治冷和加热的多功能水箱,所述发热源通过设有第一控制阀的管道与空调箱总成中的散热器连接,空调箱总成中的散热器通过管道与多功能水箱连接,所述空调箱总成和多功能水箱之间设有水泵,所述发热源通过设有第二控制阀的旁通管道与水泵的进水端连接,所述多功能水箱通过设有第三控制阀的管道与发热源连接,多功能水箱与压缩机通过管道连接,所述压缩机与冷凝器连接,冷凝器通过设有第四控制阀的管道与第一蒸发器连接,所述第一蒸发器与压缩机连接,冷凝器还通过设有第五控制阀的管道与多功能水箱连接。本发明车辆冷热管理系统能耗低。
本发明属于换热技术领域,公开了一种组合式加热、冷却模块总成及电池热管理系统,包括换热器,换热器设置有低温介质通道以及高温介质通道;加热器,设有介质流通通道以及用于对介质流通通道内的介质加热的加热件,介质流通通道与高温介质通道相连通;加热件开启时,低温介质通道关闭,高温介质通道开启;加热件关闭时,低温介质通道开启并流通低温介质,高温介质经介质流通通道流入高温介质通道。本发明的上述结构,具有结构简单紧凑、集成度高,便于系统管理、工作可靠性好、制造成本低,适于规模化生产等优点。而且能在电池热管理系统中对动力电池进行分时冷却及加热,确保动力电池在设动的温度范围内安全高效地工作。
本发明公开了基于固定路谱的混合动力车辆热管理系统的控制方法,包括以下步骤:采集车辆行驶的固定路谱的参数信息,在车辆进入爬坡工况前将其纳入控制器的控制方法的输入参数,训练神经元网络,修正风扇转速的控制策略,以热管理系统提高冷却风扇转速和提前改变转速时间为输出变量,通过提前改变风扇转速对散热器进行预降温,使得车辆在爬坡工况下满足冷却要求。本发明可以根据不同的工况进行控制策略的灵活转换,在爬坡工况前就提前进行冷却风扇的运作,通过提前改变风扇转速对散热器进行预降温,使得车辆在爬坡工况下满足冷却要求的基础上、降低风扇的耗功的效果。
本发明公开了一种电动汽车热管理系统及其控制方法和装置,系统包括电机回路、电池回路、空调冷却回路、四通阀和控制器,控制方法包括:通过第一温度传感器获取电机回路的冷却液温度作为第一温度;通过第二温度传感器获取电池回路的冷却液温度作为第二温度;通过第三温度传感器获取电池回路中BMS的电芯的温度作为第三温度;当控制器检测到电机回路发生故障或电池回路发生故障时,根据第一温度、第二温度和第三温度通过控制器控制四通阀连通电机回路和电池回路。本发明在电机回路和电池回路中的一个回路故障时通过四通阀连通另一个回路来替代工作,从而保护了热管理系统的回路,延长了车辆的使用寿命。本发明可广泛应用于新能源汽车领域。