本发明公开了一体式真空分层保温排气管,发动机与排气管(1)连接,所述排气管(1)从内向外依次分为三层,最内层为排气内管(103),中间层为保温套(101),最外层真空不锈钢保温壳体(102),所述保温套(101)覆设在所述排气内管(103)外,最外层由真空不锈钢保温壳体(102)封装成一体,真空不锈钢保温壳体(102)上设有压差传感器(2),用以监测不锈钢保温壳体(102)的内外压差,预警真空保温状态。本发明通过设置多层保温装置实现了发动机排气保温及驾驶舱隔热,提高废气后处理装置的入口端排气温度,提升了热管理性能及后处理催化转化效率,有效降低尾气污染物排放;并监测不锈钢保温壳体(102)的工作状态。
本发明的发明名称是使用相变材料结合热导管和箔、泡沫或其他多孔介质的能量储存和热管理。一方面,储存能量的装置包括:外壳,其限定封闭的室;布置在室中的箔或泡沫,其由导热材料形成;布置在室中的相变材料;和延伸通过外壳的至少一个热导管,其与泡沫或箔和相变材料热连通。可描述其他方面。
本发明公开了一种燃料电池汽车动力总成的耦合热管理系统。所述耦合热管理系统包括燃料电池散热管路、氢气加热系统、氢气加热系统旁通水管路、散热器、水箱、循环水泵和第一换向装置;通过第一换向装置将燃料电池散热管路流出的水引入氢气加热系统,通过氢气加热系统利用燃料电池散热管路流出的水中所蕴含的热量对车载高压储氢气瓶进行直接或间接的加热。本发明的热管理系统实现了利用燃料电池工作过程中产生的废热抑制车载高压储气瓶在向燃料电池供氢过程中的温降,在确保燃料电池汽车动力总成安全性的前提下有效避免了能量的浪费。
本发明公开一种L-CH2型加氢站热管理系统。第一汽化器的进液口连接加氢站的低压液氢储罐的出液口;第一汽化器的出气口与第二汽化器的进气口之间接入中间换热器的管程,第二汽化器的出气口连接至气体混合装置的第一接口;气体混合装置的第二接口与加氢站高压储氢容器接管相连,第三接口与氢气预冷器的氢气入口相连,氢气预冷器的氢气出口连接至高压氢气加气枪;氢气预冷器的预冷液进口和预冷液出口之间接入中间换热器的壳程,由氢气预冷器流出的预冷液经过中间换热器内低温氢气的冷却后,流回至氢气预冷器内进行循环。本发明无需采用冷能回收技术,利用液氢携带冷量进行高压氢气预冷,省去传统L-CH2型加氢站高压氢气加注时的预冷能耗。
本实用新型涉及燃料电池汽车技术领域,尤其涉及一种车用燃料电池热管理系统,包括散热装置、连通燃料电池的冷却液出口与散热装置的入口的输出管路、连通散热装置的出口与燃料电池的冷却液入口的输入管路、连通输出管路与输入管路且相互并联的加热管路和去离子管路,加热管路上设有加热器,去离子管路上设有去离子器。加热管路和去离子管路相互并联,使得加热器和去离子器的工作相互独立、互不影响,加热器不工作或者加热回路切断时,都不会影响去离子器和去离子回路保持正常工作状态,从而在实现燃料电池冷启动的同时,能够保证系统的绝缘性能。
本发明提供了一种柴油机排气温度热管理系统,包括柴油机排气接入三通管,保温管、设置在保温管上的保温管开度阀,非保温管,设置在非保温管上的非保温管开度阀,辅助加热器排气接入三通管,辅助加热器,紧固件,后处理装置,以及温度传感器;所述保温管开度阀、非保温管开度阀、温度传感器、辅助加热器均连接ECU。本发明中的保温管、非保温管、保温管开度阀、非保温管开度阀及辅助加热器的协同作用可较好地控制进入后处理装置的尾气温度,使得柴油机尾气后处理装置在全工况范围内均处于较高效的工作区间。该系统适用于移动源、固定源柴油机尾气后处理装置。
本发明涉及一种利用SCR气辅结构的DPF主动再生进气控制系统及方法,所述方法包括:信号获取步骤,获取传感器组件的采集信号,包括DOC前氧气传感器信号SigO1、排气质量流量信号SigQm、DPF前温度传感器信号SigT1、DPF后温度传感器信号SigT2、DOC前温度传感器信号SigT3和SCR后NOx传感器信号SigNOx;触发步骤;DOC前补气步骤;热管理步骤。与现有技术相比,本发明具有可促进喷射燃油在排气尾管中的蒸发、雾化效果,提高HC燃烧效率等优点。
本发明公开了一种燃料电池汽车动力总成的耦合热管理系统。所述耦合热管理系统包括燃料电池散热管路、氢气加热系统、氢气加热系统旁通水管路、散热器、水箱、循环水泵和第一换向装置;通过第一换向装置将燃料电池散热管路流出的水引入氢气加热系统,通过氢气加热系统利用燃料电池散热管路流出的水中所蕴含的热量对车载高压储氢气瓶进行直接或间接的加热。本发明的热管理系统实现了利用燃料电池工作过程中产生的废热抑制车载高压储气瓶在向燃料电池供氢过程中的温降,在确保燃料电池汽车动力总成安全性的前提下有效避免了能量的浪费。
本发明公开一种L-CH2型加氢站热管理系统。第一汽化器的进液口连接加氢站的低压液氢储罐的出液口;第一汽化器的出气口与第二汽化器的进气口之间接入中间换热器的管程,第二汽化器的出气口连接至气体混合装置的第一接口;气体混合装置的第二接口与加氢站高压储氢容器接管相连,第三接口与氢气预冷器的氢气入口相连,氢气预冷器的氢气出口连接至高压氢气加气枪;氢气预冷器的预冷液进口和预冷液出口之间接入中间换热器的壳程,由氢气预冷器流出的预冷液经过中间换热器内低温氢气的冷却后,流回至氢气预冷器内进行循环。本发明无需采用冷能回收技术,利用液氢携带冷量进行高压氢气预冷,省去传统L-CH2型加氢站高压氢气加注时的预冷能耗。
本申请提供的一种膨胀罐,通过在所述罐体内设置去离子器,使燃料电池系统所占体积减小,并提高了集成度,同时,由于去离子器集成在膨胀罐内,所以在更换去离子器时,无需将系统内冷却液全部放掉,节约了更换时间。进一步地,所述罐体上设置有溢流管口,能够保证冷却液压力可控,并能与空气、氢气两侧压力均衡;能够有效解决水泵急停时,冷却液逆冲进膨胀罐溢出的问题,确保燃料电池冷却液不被污染,保证燃料电池运行安全等优点。
本申请实施例公开一种独立型海岛微电网锂电池储能系统,包括:储能系统箱体、配电保护柜、第一储能双向逆变器柜、第二储能双向逆变器柜、第一电池簇组、第二电池簇组、消防系统、热管理系统以及监控系统柜;本申请提供一体化设计方案、高度集成化设计,提供高性价比、高使用寿命的储能系统,缩短海岛微电网系统建设周期,提高海岛微电网系统可靠性及安全性通过设置标准尺寸的集装箱体,方便运输、搬运、安装,可实现标准化安装;预先安装及连接,减少现场安装工作,同时保证安装品质;集装箱隔热层设计,有效防止集装箱因阳光直射导致箱内温度升高;专业化的系统通风散热设计,保证良好的通风散热效果,确保设备正常运行。
本申请提供的一种膨胀罐,通过在所述罐体内设置去离子器,使燃料电池系统所占体积减小,并提高了集成度,同时,由于去离子器集成在膨胀罐内,所以在更换去离子器时,无需将系统内冷却液全部放掉,节约了更换时间。进一步地,所述罐体上设置有溢流管口,能够保证冷却液压力可控,并能与空气、氢气两侧压力均衡;能够有效解决水泵急停时,冷却液逆冲进膨胀罐溢出的问题,确保燃料电池冷却液不被污染,保证燃料电池运行安全等优点。