本实用新型涉及一种车辆及其电池热管理系统。加热器串联设置在所述导热通道与散热器连通的管路上并且所述加热器中的管路始终处于连通状态,当电池温度较低时控制器控制加热器工作对电池进行加热,当电池温度较高时,加热器不工作,此时加热器中的管路构成循环管路的一部分。该电池热管理系统无需针对加热器单独设置支路,使得电池热管理系统的管路结构简单。
本发明涉及汽车电池系统控制技术领域,公开了一种新能源汽车电池,包括电池包、功率控制单元和热管理单元,所述热管理单元包括电池冷却子单元和电池加热子单元,所述功率控制单元包括充电模块和电力电子模块,所述电池包连接所述功率控制单元,所述热管理单元分别连接电池包和功率控制单元,所述功率控制单元监控电池包的温度,通过热管理单元调整电池包的工作温度。本发明还公开了电池工作模式的控制方法。本发明使新能源汽车上的电池能满足消费者需要的性能范围、可靠性、寿命和成本。
本实用新型公开了一种纯电动汽车整车热管理系统,所述纯电动汽车上具有热泵式空调系统、电池组热管理系统和电控冷却系统;该系统包括热泵式空调制冷剂液体循环回路、电池组热管理系统和电控冷却系统的冷却液液体循环回路以及ECU控制中心;两大液体循环回路在第一蒸发器和第二蒸发器处耦合,并且第一蒸发器和第二蒸发器的两个进出液体内部管道独立并且液体流向采用对流形式设计。本实用新型可以在保证驾乘舒适性的情况下将三个子系统间的热量相互利用,充分利用外界冷源和子系统热源,减少整车热管理系统的能耗。
一种汽车蓄电池高效管理系统属于管理系统技术领域,尤其涉及一种汽车蓄电池高效管理系统。本发明提供一种可提高电池集成系统的寿命的汽车蓄电池高效管理系统。本发明包括主系统模块、人机界面模块、电路检测总线、电池组检测模块、保护中心控制单元、蓄电池检测集线器;所述的蓄电池检测集线器分别与电池组模块的内部电路相连接;电池组模块链接的个数由电动汽车电机标配的额定功率与蓄电池的容量来确定;所述主系统模块包括微控制器、与所述MCU连接的保护与安全评估模块、与所述MCU连接的主动均衡模块、与所述MCU连接的热管理模块。
本发明公开了一种纯电动汽车整车热管理系统及管理方法,所述纯电动汽车上具有热泵式空调系统、电池组热管理系统和电控冷却系统;该系统包括热泵式空调制冷剂液体循环回路、电池组热管理系统和电控冷却系统的冷却液液体循环回路以及ECU控制中心;两大液体循环回路在第一蒸发器和第二蒸发器处耦合,并且第一蒸发器和第二蒸发器的两个进出液体内部管道独立并且液体流向采用对流形式设计。本发明可以在保证驾乘舒适性的情况下将三个子系统间的热量相互利用,充分利用外界冷源和子系统热源,减少整车热管理系统的能耗。
本发明涉及一种电池组、电池包及具有该电池包的车辆,其中,电池组包括电池组模块及换热件。电池组模块包括相变材料块及至少两个单体电池,至少两个单体电池之间串联或并联设置,至少两个单体电池沿单体电池的厚度方向并排间隔设置。单体电池的正面及反面均设有相变材料块,相邻两个单体电池通过相变材料块分隔开来。换热件与侧面相连,且与相变材料块的侧壁相连。换热件的内部设置有换热介质通道,换热介质通道具有进口及出口。电池包包括至少两个上述电池组,车辆包括车辆主体及设置于车辆主体上的电池包。上述电池组、电池包及具有该电池包的车辆,具备热管理能耗低、单体电池温度响应及时、温度范围合理、单体电池间的温度均衡等优点。
一种基于热电效应的电池模组热管理装置,在电池包箱体内部,由上至下顺次紧贴配置电池模组,导热支撑板,半导体热电组件和液体导热通道,并在电池模组内匀布多个导热体,导热体下部紧贴导热支撑板,其中:导热支撑板横置,其四周边缘紧贴电池包箱体内壁;半导体热电组件包括横置的第一热交换板和第二热交换板,以及立置紧贴在两者之间的若干个热电单元,半导体热电组件的电流方向能够切换;液体导热通道位于电池包箱体底部,液体导热通道内盛装导热液体,液体导热通道通过电池包箱体外部配置的泵机与外部换热器连通。本装置集制冷、加热于一体,结构紧凑、换热高效,能够保证电池始终在最佳温度环境中工作,具有良好的应用前景。
一种基于热电效应的电池模组热管理方法及装置,电池包箱体内部,由电池模组 导热体 半导体热电组件 液体导热通道形成的导热通路内,所述电池模组热管理方法包括两种工作模式:在高温环境下执行制冷模式,半导体热电组件上部温度下降至环境温度以下,成为制冷面,半导体热电组件下部温度上升,成为散热面,产生的热量通过液体导热通道携带排出;在低温环境下执行加热模式,半导体热电组件上部温度上升,成为加热面,通过导热体热传导将电池模组温度加热以达到正常的工作温度范围,同时半导体热电组件下部温度下降,成为吸热面。本方法及装置集制冷、加热于一体,结构紧凑、换热高效,能够保证电池始终在最佳温度环境中工作,具有良好的应用前景。
本发明揭示了一种发动机冷却系统,发动机的缸体、缸盖水套经暖风管路输送冷却水至暖风芯体,所述缸体、缸盖水套经小循环管路输送冷却水至水泵,所述暖风芯体经暖风回路输送冷却水至水泵,所述的小循环管路上设有第一电磁阀,所述暖风回路上设有第二电磁阀。本发明发动机冷却系统通过控制小循环管路及暖风管路的通断,来实现发动机快速升温,以提高发动机热管理效果。
本实用新型公开一种挖掘装载机可调节独立散热装置,冷却总成(1)放置在发动机(5)的皮带轮端,液压泵(4)与发动机(5)连接,液压泵(4)的一个油口通过吸油管(7)与液压油箱连接,液压泵(4)的另一个油口通过油管与电磁比例溢流阀(2)连接,电磁比例溢流阀(2)通过回油管(6)与液压油箱连接,电磁比例溢流阀(2)通过油管与马达(8)连接,温度传感器安装在散热器上,温度传感器和电磁比例溢流阀(2)与热管理系统控制器电连接。有益效果是:风扇不再由发动机直接驱动,热管理系统控制器分析温度传感器检测到的散热器实时数据,通过电磁比例溢流阀控制油量达到根据散热器温度控制风扇转速的目的,节约油耗,降低噪声。
一种动力电池热管理结构,该动力电池是多个具有独立热管理结构的电池模块所组成,电池单体有间隔地布置在电池模块热管理风道框架内,框架采用封装形式,两端设置可拆卸的进、出风口,进风口安装有进风叶片,进风叶片可根据电池温度高低由微型电机控制其开度,在电池模块内布置温度传感器,监控电池温度变化,将温度信号反馈给控制单元,以对电池温度形成闭环控制。本发明提出了一种单个模块的热管理结构,该结构简单且控制原理简易,集成可操作性高,同时克服了由于电池包结构及空间限制导致整体热管理效果不均衡,影响电池使用性能的问题。
本发明公开一种挖掘装载机可调节独立散热装置,冷却总成(1)放置在发动机(5)的皮带轮端,液压泵(4)与发动机(5)连接,液压泵(4)的一个油口通过吸油管(7)与液压油箱连接,液压泵(4)的另一个油口通过油管与电磁比例溢流阀(2)连接,电磁比例溢流阀(2)通过回油管(6)与液压油箱连接,电磁比例溢流阀(2)通过油管与马达(8)连接,温度传感器安装在散热器上,温度传感器和电磁比例溢流阀(2)与热管理系统控制器电连接。有益效果是:风扇不再由发动机直接驱动,热管理系统控制器分析温度传感器检测到的散热器实时数据,通过电磁比例溢流阀控制油量达到根据散热器温度控制风扇转速的目的,节约油耗,降低噪声。