本发明提供一种用于增程式车辆动力电池的控制方法及控制系统,用于控制所述车辆的热管理系统或增程式发动机的余热对所述动力电池进行加热,所述控制方法包括:采集所述动力电池的温度;根据所述动力电池的温度低于预设温度值控制所述动力电池停止充、放电;控制所述热管理系统对所述动力电池进行主动加热;或控制所述热管理系统不对所述动力电池进行主动加热,并利用所述增程式发动机的余热对所述动力电池进行加热。本发明解决了现有技术中通过如水循环系统预热动力电池而提高车辆制造成本的问题。
本发明是一种车载电池组热管理系统、车载电池组热管理方法及汽车,涉及汽车技术领域,为解决现有电池组占用空间大且热管理使用工况单一的问题而设计。该车载电池组热管理系统包括电池组加热回路,电池组加热回路包括设置在暖风回路中的加热装置和热交换器,热交换器将加热装置产生的热量传递至电池组;加热装置由充电桩或者发电机供电。该车载电池组热管理方法利用上述车载电池组热管理系统对电池组进行热管理。该汽车包括上述车载电池组热管理系统。本发明提供的车载电池组热管理系统、车载电池组热管理方法及汽车用于满足电池组的热管理需求。
本发明提供了一种动力电池热管理系统,属于新能源汽车技术领域。其包括电池托盘本体、管路、热界面材料、电池,电池托盘本体内具有安装槽,安装槽连续分布在电池托盘本体且是开口式,在安装槽连续的两端具有一个进液口和一个出液口,管路安装在安装槽内,用于传输传热介质,热界面材料布置在管路上方,电池,压装在电池托盘本体处,并将管路及热界面材料压紧;本发明采用的铸造电池托盘本体在整体重量上、布置空间上和产品质量保证上都有较大的优势,用到的薄壁管路符合汽车轻量化要求;管路不承载,由电池托盘本体承载电池及相应零部件,显著降低其被破坏的可能性,系统可靠性高。
本实用新型提供了一种用于增程式混合动力车辆的发电机的冷却系统,属于车辆技术领域。所述用于增程式混合动力车辆的发电机的冷却系统包括具有冷却泵的冷却回路,所述冷却回路经过发电机及发电机控制器,以冷却所述发电机和所述发电机控制器;和集成在所述发电机控制器中的冷却泵控制器,用于以变频方式控制所述冷却泵工作。本实用新型通过将冷却泵控制器集成于发电机控制器处,就能够及时采集发电机系统中的相关信息,因而可以提高冷却控制的响应速度;同时通过变频控制冷却泵工作,就能够根据发电机系统的散热需求实时控制冷却液流量,使得发电机处于最优工作状态,因而有效提高了工作效率。
本发明提供了一种热管理系统,属于动力车辆和混合动力车辆领域。该系统包括:与多个电池模组分别对应的多个冷却单元,每一冷却单元构造成能够流通冷却介质以冷却对应的电池模组,多个冷却单元以并联的方式接收冷却介质;与多个冷却单元分别对应的多个流量阀;温度获取模块,用于获取多个电池模组的温度;和控制器,用于根据电池模组的温度确定每一电池模组对应的冷却单元的流量阀的应开开度,并根据应开开度使得每一流量阀打开相应开度。本发明的方案,由于可以通过控制相应的流量阀的开度来调节流经对应的冷却单元的冷却介质的流量,解决了电池模组之间温差过大的问题,从而改善了动力电池性能,延长了动力电池使用寿命。
本发明提供了一种热管理系统,属于电池热管理领域。该系统包括:与多个电池模组分别对应的多个冷却单元,每一冷却单元构造成能够流通冷却介质以冷却对应的电池模组;用于接收冷却介质的总入口和用于排出冷却介质的总出口;流向转换器,以流体连通的方式分别与每一冷却单元连接,并将多个冷却单元以串联的方式相互连通成使得从总入口接收的冷却介质能沿一流动路径顺序地流过每一冷却单元并从总出口排出;其中,流向转换器是可操作的,以使得任一冷却单元能作为多个冷却单元中的第一个来接收来自总入口的冷却介质。本发明可以有效降低系统中任意电池之间的温差,彻底解决电池之间温差过大的问题,从而改善电池性能,延长电池使用寿命。
本发明提供了一种动力电池包热管理系统,涉及新能源汽车领域。热管理系统包括:在托盘内限定了第一通道,第一热交换管道与第一通道制成为一体;和在支架内限定了第二通道,第二热交换管道与第二通道制成为一体;其中,托盘和支架之间限定了一容纳空间,第一电池模组设置在该容纳空间;托盘与支架紧固连接,第一热交换管道与第二热交换管道在所述托盘与所述支架的连接处密封连通。由于将散热通道限定在了托盘和支架内部,因此托盘和支架既作为支撑结构又作为散热结构,提高了电池包空间的利用率,对系统结构进行了有效减重。而且第一热交换管道与第二热交换管道连接,这延伸了热交换通道的长度,有利于有效控制多组电池模组的温度。
本发明公开了一种用于增程式混合动力车辆的发电机的冷却系统,涉及车辆技术领域。所述用于增程式混合动力车辆的发电机的冷却系统包括具有冷却泵的冷却回路,所述冷却回路经过发电机及发电机控制器,以冷却所述发电机和所述发电机控制器;和集成在所述发电机控制器中的冷却泵控制器,用于以变频方式控制所述冷却泵工作。本发明通过将冷却泵控制器集成于发电机控制器处,就能够及时采集发电机系统中的相关信息,因而可以提高冷却控制的响应速度;同时通过变频控制冷却泵工作,就能够根据发电机系统的散热需求实时控制冷却液流量,使得发电机处于最优工作状态,因而有效提高了工作效率。
本发明提供了一种电池包液冷系统,包括托盘,所述托盘在其内限定了第一通道,第一热交换管道紧贴固定在所述第一通道内;和支架,所述支架在其内限定了第二通道,第二热交换管道紧贴固定在所述第二通道内;其中,第一电池模组紧贴放置于所述托盘和所述支架之间;所述托盘与所述支架紧固连接,所述第一通道与所述第二通道在所述托盘与所述支架的连接处密封连通,以使得所述第一热交换通道与所述第二热交换通道在所述连接处密封连通。因此,多组电池模组的电池包空间能够在托盘和支架的组合中得到合理利用。密封管道固定在一体成型的托盘或者支架通道内,能够减少液冷系统的加工工艺。
本发明涉及一种纯电动汽车整车热管理系统,其特征是包括电驱动系统及充电机冷却回路、动力电池冷却回路、动力电池充电加热回路、乘客舱采暖回路及乘客舱制冷回路;所述的电驱动系统及充电机冷却回路包括通过管路连接的散热器、风扇、水壶,设置在回路中的电驱动系统及充电机冷却水泵,以及电机控制器及DCDC,以及充电机和电机,利用散热器实现液气换热对散热部件进行冷却。提升了电动车环境适应性能、高温环境下的动力性能、关键零部件耐久性,以及整车能量利用效率。
本发明公开了一种用于车辆的动力电池组热管理装置及热管理方法,涉及车辆领域。所述用于车辆的动力电池组热管理装置包括加热循环水路,配置成利用发动机尾气余热给所述动力电池组加热;散热循环水路,配置成高温时给所述动力电池组降温;温度传感器,安装在所述动力电池组处并用于监测其实时温度;和控制器,根据所述动力电池组的实时温度与设定的最小温度阈值和最大温度阈值进行比较,根据比较结果,选择启动所述加热循环水路或启动所述散热循环水路给所述动力电池组加热或者降温,直到所述动力电池组温度满足理想的工作温度。本发明还提供了相应的方法。通过本发明,可有效平衡动力电池组的温度,改善其性能的同时增加了其使用寿命。
本发明提出了一种发动机冷却系统,包括冷却水泵、缸体水套和缸盖水套;还包括分流装置。其中,分流装置的入口与冷却水泵的出口连接;分流装置至少包含两个出口,至少一个出口连接缸体水套,至少一个出口连接缸盖水套。本发明能够更加精确地控制冷却发动机缸体和缸盖的冷却液流量,满足发动机缸体和缸盖的不同温度要求,更好地控制发动机热管理系统;同时实施、优化容易,且成本较低。