本发明公开了一种液态全浸式锂电池的热管理实验方法,包括如下步骤:步骤一,设置一个上方开口的试验箱、信息分析控制电脑、温度检测装置和温度控制装置;步骤二,将温度检测装置分成液体温度检测装置和电池温度检测装置;步骤三,通过在试验箱的底部设置针刺或将锂电池外接短路电路触发锂电池热失控;步骤四,信息分析电脑便接收采集液体温度检测装置和电池温度检测装置输出的环境温度和锂电池温度。本发明的液态全浸式锂电池的热管理实验方法,通过步骤一至步骤四的设置,便可有效的对锂电池的热管理进行实验了。
本申请涉及一种燃料电池汽车热管理系统。本申请提供的所述燃料电池汽车热管理系统包括:燃料电池子系统、动力电池子系统和热交换控制子系统。所述热交换控制子系统能够方便、快捷的实现所述燃料电池子系统和所述动力电池子系统之间的热交换。从而实现燃料电池的快速启动更有利于缩短燃料电池汽车的启动时间。所述燃料电池汽车热管理系统通过设置所述热交换子系统将所述燃料电池子系统和所述动力电池子系统结合在一起,从结构上实现了一体化设计,同时也解决了动力电池保温的问题。所述燃料电池汽车热管理系统可以充分利用燃料电池子系统和动力电池子系统工作过程中产生的余热。
本申请涉及一种燃料电池汽车热管理方法。燃料电池汽车热管理系统包括燃料电池子系统、动力电池子系统、乘客舱供暖子系统和热交换控制子系统。所述方法包括检测当前环境温度T。当所述当前环境温度T≥所述动力电池子系统中动力电池需要保温和所述乘客舱供暖子系统需要供暖的环境温度阈值T1时,所述燃料电池汽车进入正常环境启动模式,否则,所述燃料电池汽车进入低温环境启动模式。所述燃料电池汽车热管理方法解决了在低温下燃料电池快速启动和动力电池保温的问题。
本实用新型公开了一种动力电池中涡流管冷热气流控制装置,该控制装置的高压空气通过高压管进入涡流管,形成冷热气流。当汽车冷起动时,动力电池内部温度较低,热气端二位三通电磁阀失电,热气流通过电磁阀下位进入动力电池组内部进行预热;当动力电池内部温度过高时,冷气端二位三通电磁阀得电,冷气通过电磁阀上位进入动力电池组内部进行冷却降温;而多余气流通过排气口排出动力电池组。本实用新型采用二位三通电磁阀对冷热气流进行有效控制,解决了动力电池组冷却和预热的问题,同时能提高动力电池的安全性与续航里程。本实用新型还具有结构简单、操作方便、容易实施的优点。
本发明公开了一种电池螺线管热管理装置,包括包括导热贴于电池表面设置的毛细管集成板,所述毛细管集成板底端密封插入位于电池下方的储液槽且没入储液槽中的液面以下,所述毛细管集成板顶端密封插入通气室底部;所述通气室与所述储液槽之间通过螺线管密封连通。本发明公开的一种电池螺线管热管理装置,通过采用无需动力引流的毛细管吸收电池的热量使渗透相变材料产生蒸发来对电池进行散热,之后再进行相变材料冷凝回收,实现相变材料的立体循环使用,非常环保;快速均衡单体电池内部、单体电池间的温差,减少热堆积,延长电池使用寿命。
本发明公开了一种电池内循环热管理系统,包括贴于电池表面设置的石墨烯套和套设于石墨烯套内的多组环形热循环管;所述环形热循环管包括封闭连接的盛液段、吸热蒸发段、冷凝回收段和回流段;所述吸热蒸发段贴于石墨烯套壁紧靠电池表面侧且所述吸热蒸发段内部充满竖直布置的吸水纤维;所述冷凝回收段位于所述盛液段上方。本发明公开的一种电池内循环热管理系统,通过采用无需动力引流的吸水纤维吸收电池的热量使渗透工质戊烷产生蒸发来对电池进行散热,之后再进行工质冷凝回收,实现工质的立体循环使用,减少热堆积,延长电池使用寿命,给单体电池提供一个良好的工作温度环境。
本实用新型涉及动力电池技术领域,公开了一种圆柱体动力电池的高效热管理装置,包括圆柱体动力电池、热管和工质输送架,工质输送架包括工质管道和多张传热板,工质管道与传热板连通,热管均匀排列组成多条条形格栅,热管的两端分别与相邻的两张传热板连接,圆柱体动力电池均匀安装于条形格栅中,还设有导热元件,导热元件的一垂直侧面与热管贴合,导热元件的另一垂直侧面与传热板贴合,其有益效果在于:易于安装、维护方便,可解决圆柱体动力电池在不同的工作条件下的加热及散热问题,将电池组的最高温度、最低温度和整体温差均控制在安全工作范围内。
本实用新型提供了一种汽车发动机热管理系统模拟实训装置,包括:存储机构、加热机构、分流阀、温度传感器以及控制模块;所述分流阀出水端包括:第一分流道与第二分流道,所述第一分流道与冷却机构管道连接,所述冷却机构出水端与所述第二分流道交汇后与所述存储机构管道连接;所述观察液中设置有荧光物质,所述管道连接的管道为透光材质管道。通过简易但不简单的机构模拟了真实汽车发动机热管理系统的工作模式以及原理,并且于各部分之间通过透明管道连接,并于观察液中加入荧光物质,便于教师进行讲解,生动的展现了发动机热管理系统的工作模式及其工作原理,使得学生可以观察到观察液的运动方向,从而提高了学生的学习效率。
本发明涉及一种充分利用废热的新能源汽车整车热管理系统,包括依次串联连接并形成循环回路的水泵、水暖PTC、暖风芯体、回热器、冷却器、动力电池、CDU、电动机冷却器、水冷冷凝器、散热器和膨胀水箱,所述水暖PTC和散热器的两端连接旁通水管,所述冷却器与水冷冷凝器之间设有制冷换热单元,所述制冷换热单元内与所述冷却器并联设置空调蒸发器。与现有技术相比,本系统可以有效利用电池废热、电机废热、压缩机耗功产生的废热,把这些热量用于乘员舱空调制热、除霜、除雾和电池加热,有效降低了水热PTC的功率需求,从而减少热管理系统的能耗,提升新能源汽车的续航里程。
本发明公开了针对多种碳氢燃料的一体化多套管结构的纯氢催化装置及PEMFC发电系统。该纯氢催化装置为圆筒状结构,其内部为三层结构,其中,最外层为燃烧反应室,中间层为重整催化反应室,最内层为水煤气反应室,相邻层之间设有间隔壁;燃烧反应室用于担载燃烧催化剂,重整催化反应室用于担载重整催化剂,水煤气反应室用于担载水煤气反应催化剂,且水煤气反应室内设有氢气透过膜;重整催化反应室与水煤气反应室相通,重整催化反应室生成的产物进入水煤气反应室内继续发生反应,产生的氢气通过氢气透过膜纯化并收集。本发明推动了PEMFC技术中氢气制备、储运和后勤补给困难等问题的改善和解决。
本发明涉及一种用于LED照明灯的热管理系统,包括离子风发生装置、电加热装置和LED照明装置;所述离子风发生装置设有进风口和出风口;所述电加热装置处于所述出风口的后侧,其通过加热电路连接外部电源并获得转换成热能的电能;所述LED照明装置处于所述电加热装置的后侧;在所述LED照明装置上设有实时监测所述LED照明装置的温度的温度传感器,在所述加热电路上设有根据所述温度传感器的监测结果来调节所述加热电路的电压,进而改变所述电加热装置输出的热能的温度控制器。该系统有效解决离子风发生装置在低温环境下缺少升温功能的问题,在不同情况下进行系统工作状态的切换,实现了对LED照明装置的热管理,提高了LED照明灯的寿命和可靠性。
本发明提供了一种热管理可用功率的计算方法、热管理控制器、热管理系统,所述热管理系统包括所述热管理控制器,所述热管理控制器使用所述计算方法来计算极限工况下的热管理可用功率,该计算方法在计算热管理可用功率的同时,综合考虑了驱动可用功率的计算,而且,热管理可用功率采用一阶低通滤波算法,滤波参数的大小取决于驱动需求功率变化率的大小;驱动可用功率限制系数采用PI算法,P参数和I参数随着驱动可用功率与驱动实际功率差值的变化而变化。应用本发明提供的计算方法,极限工况下,能够在满足整车安全需求的基础上,最大程度地保证驾驶性,并且避免动力电池过放。