本发明提供一种伺服动力电源,用于机电伺服系统,属于机电领域。它包括锂电池组(1)和电源管理单元(2);电源管理单元(2)由主控单元(2 1)、单体电压检测单元(2 2)、电池均衡管理单元(2 3)、电池热管理单元(2 4)及峰值补偿单元(2 5)组成;锂电池组(1)提供机电伺服系统所需的动力电源,电源管理单元(2)进行峰值电流补偿及再生能量吸收,并对锂电池组(1)进行系统管理及实施均衡策略;本发明提供的伺服动力电源能够长时间工作、可重复使用,容量大、可靠性高,且成本低、体积小。可吸收再生能量,能够大脉冲放电,尤其适用于航天伺服电源系统。
本发明提供一种电池温场模拟装置、系统和电池热管理的验证方法。电池温场模拟装置包括:壳体;产热单元,用于产生热量,安装于壳体的内部;导热介质,填充于产热单元和壳体之间;控制器,用于采集并发送产热单元和导热介质的温度数据,并控制产热单元以一预设方式产生热量。本发明实施例的电池温场模拟装置可以在电池的热管理结构和策略设计完成后,对设计进行快速有效地验证,减少了试验周期和所需的辅助设备,大大减少了测试成本。另外,该电池温场模拟装置可以模拟不同型号电池的不同发热状态,具有很强的适应性,同时安全可控,便于试验人员调整参数和记录测试结果,有利于试验结果的准确性和科学性。
本发明涉及电动车设备领域,尤其是一种双区电池热管理系统及方法。本发明针对现有技术存在的问题,提供一种双区电池热管理系统及方法,为最大限度的扩大电池包系统的温度适应范围,将电池包分为大容量电池A和小容量电池B两个区做动力源,分区热管理(加热或冷却),并通过BMS电源管理系统、冷却控制系统以及热管理回路系统产生热空气和冷空气,并通过BMS电源管理系统控制两个电子三通阀的位置,实现对大容量电池包和小容量电池包的加热或冷却。本发明包括BMS电源管理系统、冷却控制系统以及热管理回路系统等,通过形成冷空气或热空气回路,对双电池系统进行加热或冷却。
本发明涉及一种动力电池热管理方法及系统,先找出动力电池的发热高温区域和发热低温区域;然后针对高温区域及低温区域采用不同的散热装置。不同的散热装置包括:在高温区域布置密集的散热装置,在低温区域布置稀疏的散热装置;或者在高温区域使用金属材质的散热装置,在低温区域使用塑料材质的散热装置;又或者在高温区域进行水冷或热管冷却散热装置,在低温区域采取风冷或自然冷却的散热装置。使用该方法的电池热管理系统包括电池组、上述散热装置及水泵,该电池组包括多颗单体电池,该散热装置包括分布在所述单体电池之间的多个散热水管。该动力电池热管理方法及系统可使动力电池热管理系统实现有的放矢,提升效率。
本发明公开了一种基于半导体热电效应的水冷式电池热管理系统,包括介质水循环流道、轴流泵组件、温控组件和控制模块。本发明通过增加流体扰动达到增大传热系数,从而增强了单体电池的预热与冷却效率;本发明采用了介质水循环流道,增大了单体电池的均温性,使预热或冷却过程中单体电池整体温度保持均匀;采用了半导体热电片,对介质水实现高效加热或冷却,从而维持单体电池温度一直保持在最适工作温度范围内,使单体电池放电效率增大,并且有效延长单体电池的循环寿命。
本发明提供的热管理装置及电源装置,其中,所述热管理装置包括设置于电池模组的第一液冷扁管和第二液冷扁管,所述第一液冷扁管的进液口与所述第二液冷扁管的进液口分别设于所述电池模组相对的两侧,所述第一液冷扁管的出液口与所述第二液冷扁管的出液口分别设于所述电池模组相对的两侧。通过上述设计,可以中和调节电池模组内的温度差,对每一个单体电池进行均衡散热。
本实用新型公开了基于导热纤的坦克红外隐身装置;包括热源、导热纤、温差发电模块、电源、控制模块和冷却模块;多条导热纤的一端与不同位置的热源连接,另一端都与温差发电模块的受热面连接;散热器位于温差发电模块的冷却端,电风扇设置在散热器边侧;调速器分别与电源、工控机及电风扇相连;温度传感器设置在热源上,温度传感器与工控机连接;继电器分别与工控机和温差发电模块连接。本实用新型通过导热纤将坦克不同部位的热源热量导入温差发电模块发电,并利用风扇强制对流散热,利用控制模块实现热源集中管理,解决了坦克不同热源分布较广难以用一种方法进行集中热管理、无法有效利用余热、无法实时检测坦克不同热源温度等问题。
本实用新型公开了一种动力电池复合热管理系统,包括盛装有循环液的水箱、循环泵、水箱的密封盖板、固定安装在密封盖板上方的由多个单体电池组成的电池组阵列;在各个单体电池的表面均粘贴有一均温板和一热管,热管冷却段穿过密封盖板置于水箱内的循环液中;水箱的一侧端设有循环液入,另一侧端设有循环液出口,并在水箱内设有循环液扰流结构,使循环液以曲线的流动方式由水箱的循环液入口流至循环液出口;本系统及其方法可解决电池在不同工作条件下的散热、降低电池组温差、预热电池以及热量循环利用等技术问题,同时系统结构紧凑简单,安装维护方便,符合电池热管理系统及电动汽车的发展趋势,具有良好的应用前景。
本发明公开了一种用于锂离子电池的相变导热材料及制备方法,相变导热材料由以下质量百分比的原料制备得到:低熔点有机物烷烃40~60%,导热填充材料15 30%,阻燃剂10 20%,余量为着色剂。经导热填充材料干燥、球磨分散、低熔点有机物烷烃融化后混合制备。本发明提供的相变导热材料熔点低,可控制在20~30℃;当温度低于20℃时,材料导热系数小,低于0 1W mK;温度高于30℃时,材料导热系数高,大于0 8W mK;本发明制得的材料为电绝缘体,阻燃级别在V 2以上,具有很强的阻燃性,用于锂离子电池中可实现高效的热管理。本发明制备方法简单,操作容易,生产成本低,值得大力推广。
一种电动汽车用电池热管理系统,包括内置换热器、水箱、水泵、压缩机、冷凝器、冷凝器风扇、膨胀阀、冷却用外置换热器、可通断的加热装置;冷凝器通过设在两端集流管内的挡板分割为制冷剂通过区和调温介质通过区;压缩机、冷凝器、膨胀阀、冷却用外置换热器通过管路连接,形成制冷剂循环回路;内置换热器、水泵、冷却用外置换热器连接形成第一电池调温介质循环回路;内置换热器、水泵、冷凝器连接形成第二电池调温介质循环回路。本电池热管理系统设置了多个循环回路,这样可根据环境温度的不同,切换不同的循环回路,在高温环境下,对电池包内实现有效降温,而在较低环境温度下,又能有效提升电池包的温度,从而始终使电池包内保持最适宜的温度。
本实用新型提供了一种锂离子电池模组,包括用于容置并固定电芯模块的模组底壳和用于将所述模组底壳封闭而形成密闭空间的模组上盖,所述模组底壳包括底面及由底面四周向上延伸而形成容置空间的四个面,所述模组底壳沿长度方向的侧面上设有散热翅片,所述模组底壳内设有至少两组电芯模块,所述电芯模块通过长螺杆固定在所述模组底壳内。本实用新型可以作为基础膜组,通过串并联组合成电池包以满足不同车型的需要,缩短膜组开发时间,减少了开发成本,使用范围十分广泛。
本发明涉及一种发动机智能热管理系统及控制方法,包括发动机冷却液温度传感器、中冷进气温度传感器、变矩器油温度传感器;所述发动机冷却液温度传感器包括设置在发动机本体上或冷却管路上的第一温度传感器及设置在发动机的散热器上第二温度传感器;所述中冷进气温度传感器包括设置在中冷器本体上的三传感器及设置在发动机的进气管路上的第四传感器,还包括环境温度传感器和大气压力传感器。本发明发动机智能热管理系统,包含一年四季一一对应的控制程序,根据环境温度和冷却系统的实际温度,控制冷却风扇转速,系统通过自动监测环境温度的变化,智能匹配最佳控制,在保证发动机散热需求的前提下,大大降低了燃油消耗。