本发明涉及新能源汽车的热管理控制与标定领域,具体涉及一种新能源汽车的储能单元热容的标定方法及标定系统。本发明旨在解决现有的动力电池热熔标定试验存在的试验复杂、精度低的问题。本发明的新能源汽车的储能单元热容的标定方法包括如下步骤:加热装置以设定的方式使储能单元达到目标温度;在储能单元达到目标温度的情形下,标定储能单元的热容。通过上述方法,不仅使得动力电池热容的标定试验流程简单,而且还可以有效降低开发费用,缩短开发周期,提高整车的开发效率。
一种方法,包括从计算设备内的多个温度传感器生成温度信息;以及基于观察到的温度信息的变化率来处理温度信息以生成电压降低阶跃。
本申请实施例公开一种独立型海岛微电网锂电池储能系统,包括:储能系统箱体、配电保护柜、第一储能双向逆变器柜、第二储能双向逆变器柜、第一电池簇组、第二电池簇组、消防系统、热管理系统以及监控系统柜;本申请提供一体化设计方案、高度集成化设计,提供高性价比、高使用寿命的储能系统,缩短海岛微电网系统建设周期,提高海岛微电网系统可靠性及安全性通过设置标准尺寸的集装箱体,方便运输、搬运、安装,可实现标准化安装;预先安装及连接,减少现场安装工作,同时保证安装品质;集装箱隔热层设计,有效防止集装箱因阳光直射导致箱内温度升高;专业化的系统通风散热设计,保证良好的通风散热效果,确保设备正常运行。
车辆用热管理装置具备加热向车室内吹送的空气的加热用热交换器,能够抑制在切换流入加热用热交换器的热介质时向车室内吹出的空气的温度变动。其具备:供热介质流动的第一热介质路径部(12a)及第二热介质路径部(11a);对流经第二热介质路径部(11a)的热介质供给废热的废热供给设备(21);使向车室内吹送的空气与热介质热交换而加热空气的加热器芯(22);切换热介质在加热器芯(22)与第一热介质路径部(12a)间循环的状态、和热介质在加热器芯(22)与第二热介质路径部(11a)间循环的状态的切换阀(40);调整第一热介质路径部(12a)的热介质温度的调整部(31);及在切换阀(40)使热介质在加热器芯(22)与第二热介质路径部(11a)间循环的情况下以使第一热介质路径部(12a)的热介质的温度变为规定温度以上的方式控制调整部(31)的工作的控制装置(60)。
车辆用热管理装置具有多个热介质回路(11、12、13、14)、储存罐(47)以及连通部(51A、51B、51C、51D、52A、52B、52C、52D、41、42、43、44、45)。在多个热介质回路的内部,热介质彼此独立地循环。储存罐对混入到热介质中的气泡进行分离。连通部使储存罐与多个热介质回路中的任意的热介质回路连通。由此,在具有多个热介质回路的车辆用热管理装置中,抑制在由储存罐进行排气时产生热损失的情况。
制冷循环装置具有:高压侧热交换器(15),该高压侧热交换器(15)使从压缩机(22)排出的高压的制冷剂与热介质进行热交换;低压侧热交换器(14),该低压侧热交换器(14)使减压后的低压的制冷剂与热介质进行热交换;车载设备(81A、81B、81C),该车载设备(81A、81B、81C)供热介质循环,向热介质供给热量;热介质空气热交换器(13),该热介质空气热交换器(13)使热介质与空气进行热交换;切换部(18、19),该切换部(18、19)对于车载设备切换如下状态:使热介质在车载设备与高压侧热交换器之间循环的状态、使热介质在车载设备与低压侧热交换器之间循环的状态,该切换部(18、19)对于热介质空气热交换器切换如下状态:使热介质在热介质空气热交换器与高压侧热交换器之间循环的状态、使热介质在热介质空气热交换器与低压侧热交换器之间循环的状态;以及控制部(60),该控制部(60)在判定为需要对热介质空气热交换器进行除霜的情况下,控制切换部的动作以成为除霜模式,并且使压缩机驱动,除霜模式使热介质在低压侧热交换器与车载设备之间循环并且使热介质在高压侧热交换器与热介质空气热交换器之间循环。
一种方法包括:从温度传感器接收电信号,其中温度传感器设置在包括处理器芯片的封装件内,进一步其中温度传感器通过封装件内的材料与处理器芯片热分离;从电信号生成温度信息;处理温度信息以确定处理器芯片的性能应当被减轻;以及响应于温度信息而减轻处理器芯片的性能,其中处理温度信息和减轻处理器的性能由处理器芯片执行。
本发明提供一种车辆用热管理装置,具备热介质回路(11)、热源部(23)和设备(24)。在热介质回路中,冷却发动机(21)的热介质进行循环。热源部加热热介质。当流入设备的热介质为规定温度(To)以上时,设备能够发挥功能并且加热热介质。在发动机的预热时,由热源部生成的热与向发动机提供相比优先提供给设备。由此,在发动机的预热时,由热源部生成的热与向发动机提供相比优先提供给设备,因此能够提前预热发动机。
本实用新型公开了一种新能源汽车动力储能仓散热系统,其包括动力储能仓散热系统、动力储能散热系统和动力储能热管理系统;动力储能仓散热继电器和动力储能装置继电器的线圈分别与动力储能热管理系统电连接;动力储能仓散热风扇、动力储能仓散热继电器的主触点、钥匙开关、车载电源串联组成闭合回路;动力储能装置散热风扇、动力储能装置继电器的主触点、动力储能装置保险丝、钥匙开关、车载电源串联组成闭合回路。优点在于:高温环境下,动力储能仓散热系统与动力储能散热系统协同工作保证动力储能仓系统快速散热,使动力电池系统工作状态保持在最佳状态,保证车辆较长的续驶里程同时达到良好的节能效果。
本发明涉及新能源汽车的热管理控制与标定领域,具体涉及一种储能单元热容的标定方法及标定系统。本发明旨在解决现有的动力电池热熔标定试验存在的试验复杂、精度低的问题。本发明的储能单元热容的标定方法包括如下步骤:加热装置以设定的方式使储能单元达到目标温度;在储能单元达到目标温度的情形下,标定储能单元的热容。通过上述方法,不仅使得动力电池热容的标定试验流程简单,而且还可以有效降低开发费用,缩短开发周期,提高整车的开发效率。
本发明的车辆用热管理系统包括:冷媒回路(20);第1热媒回路(C1),与冷媒回路的低压侧冷媒进行换热的热媒在第1热媒回路循环;第2热媒回路(C2),与冷媒回路的高压侧冷媒进行换热的热媒在第2热媒回路循环;以及切换装置(35、36、37、38、45、46、50i、61、62),根据第1热媒回路的热媒的温度对第1热媒回路与第2热媒回路连结的连结模式与第1热媒回路与第2热媒回路未连结的非连结模式进行切换。还设置有热媒温度调整装置(50),判定为使第1热媒回路的热媒吸热的吸热用换热器(13)上附着有霜的情况下提升第2热媒回路的热媒的温度。由此可抑制热媒温度降低至所需程度以上,从而可靠地获得用以融化附着在吸热用换热器上的霜的热量。
一种车辆用空调装置,包括:热交换器用调节部(60b),其调节流经热媒外部空气热交换器(13)的热媒以及外部空气中至少一方的流量,以使得与空气冷却用热交换器(16)的表面温度(TC)相关联的温度接近于第1目标温度(TCO);以及制冷剂流量调节部(60d),其调节从压缩机(22)排出的所述制冷剂的流量,以使得与在空气冷却用热交换器(16)以及空气加热用热交换器(17)中的至少一方的热交换器被温度调节而朝向车室内吹出的送风空气的温度(TAV)相关联的温度接近于第2目标温度(TAO)。由此,能够恰当地控制空气冷却用热交换器(13)的表面温度以及朝向车室内吹出的送风空气的温度。