本实用新型涉及电池技术领域,尤其涉及一种电池包。该电池包包括电芯、箱体和热管理系统,电芯固定在箱体中,热管理系统包括设于箱体内的微阵列热管和设于箱体外的液冷件,微阵列热管包括蒸发段和冷凝段,电芯产生的热量的散热路径设置为:依次经过蒸发段、冷凝段、箱体和液冷件后传导至电池包外部。该电池包能够提高散热效果、适应不同环境温度、且不会因液冷件漏液而引起短路问题。
本实用新型属于电池生产制造技术领域,尤其涉及一种固态电池模组,包括若干第一电池和若干第二电池,若干第一电池之间设置有若干加热片,若干加热片分别与所述第二电池电连接,所述第一电池为固态电池,所述第二电池为液态电池和 或凝胶态电池。相比于现有技术,本实用新型通过将固态电池与液态电池和 或凝胶态电池组合形成新的固态电池模组,通过加热片为第一电池提供热量,待第一电池温度达到设定温度时,再启动电池模组对外输出,因此,本实用新型可实现自供热,无需外接加热源及其相应的热管理系统,有效降低设计成本和热管理成本。
本发明公开了一种动力电池模组与液冷系统一体化结构,包括电池模组和模组架,所述电池模组由多个单体电芯并行排列而成,电池模组置于模组架内,所述模组架内设有冷却腔,在模组架的外壁上设有进液口和出液口,进液口和出液口与冷却腔相贯通;所述进液口和出液口内均设有导流块,所述导流块为圆锥形,且导流块的锥尖朝外设置。本发明结构简单,冷却效果好。
本发明涉及一种纯电动汽车低压电池热管理系统,包括:冷媒系统和电池散热器水路冷却系统;冷媒系统内压缩机排气口经高压硬管连通压缩机排气管与冷凝器进口连接,冷凝器出口经冷凝器出口管与膨胀阀入口连接,膨胀阀出口与Chiller换热器的冷媒进口连接,Chiller换热器的冷媒出口经硬管与压缩机吸气口连接;电池散热器水路冷却系统内电子水泵出水口与所述二位三通电磁阀的A端口相连,二位三通电磁阀的C端口经水管管路与散热器进水管相连,散热器的出水口经散热器出水管与所述三通管的E端口连接,三通管的F端口经水管管路与电池的冷却液入口连接。本发明通过冷媒系统和电池散热器水路冷却系统两种回路,根据电池温度不同实时切换电池冷却方式实现节能。
本发明公开了一种新能源汽车的热管理系统,包括压缩机、冷凝器、膨胀阀、HVAC、气液分离器、热交换模块和ECU;热交换模块包括可相互进行热交换的水流动管道和冷媒流动管道,冷媒流动管道通过低温冷媒分流管道与冷凝器的出口连通,水流动管道的外部设置有电辅助加热装置,利用冷媒的冷量或者热量与水热交换后,将水送入电池温控组件、电机电控散热组件和HVAC的暖风芯子,从而实现对电池包、电机电控的制冷或制热,同时也实现HVAC的制热。该热管理系统简化了结构,可以同时满足车内温度调节、电池温度调节、电机电控的温度调节,温度调节响应迅速,能效比高。
本实用新型公开一种新型动力电池成组结构,波纹板和单体电池框通过焊接构成单体电池外壳,单体电池固定于单体电池外壳内,密封压紧架A和密封压紧架B固定连接,单体电池外壳固定于密封压紧架A和密封压紧架B之间,密封圈A布置在每个单体电池外壳中波纹板面外围,若干个所述单体电池外壳相互平行设置,压紧板A和压紧板B置于平行设置单体电池外壳的两侧,紧固螺栓贯穿于压紧板A、单体电池和压紧板B,在压紧板B上设置电堆负极引线孔和电堆正极引线孔。本实用新型动力电池由规则的带波纹板的单体电池紧密贴合而形成的,不需要额外增加热管理介质流道板。动力电池堆空间利用率高,换热效率高,热管理介质流道清理方便,不需要额外的保温措施。
本实用新型公开了一种新能源汽车高压加热器,包括控制模块、空调发热芯体、电池发热芯体、空调水室、电池水室;所述的控制模块分别与空调发热芯体和电池发热芯体相连接,可单独控制空调发热芯体和电池发热芯体的发热功率;所述的空调水室与空调发热芯体通过导热硅胶相粘接;所述的电池水室与电池发热芯体通过导热硅胶相粘接;所述的空调水室和电池水室独立隔开,且均设置有进水管和出水管。本实用新型所涉及的一种高压加热器新能源汽车高压加热器,包含空调水室、电池水室,并且两个水室相互独立运行,每个水室的加热温度可独立调整。可同时满足空调采暖、电池预热对工质的温度需求。
本实用新型公开了一种纯电动汽车整车热管理系统,设有可调节进风格栅,还包括电驱动系统、电池系统和空调系统。所述电驱动系统包括第一水泵、第一三向阀、电驱动散热器。所述电池系统包括电池冷却器、电池、PTC电加热器和第二水泵。所述空调系统包括空调加热芯、止回阀、第二三向阀。本实用新型公开的纯电动汽车整车热管理系统,将电驱动的热量导入到空调系统,在低温工况下辅助空调系统进行采暖,实现了热量循环利用。同时,通过对热管理系统各循环回路的智能控制,从而保证了电驱动、电池等均在合适的温度区间内工作,实现电动汽车完整的冷热系统管理。
本发明公开了一种汽车的热管理电池系统、热管理方法及电池控制装置。所述汽车的热管理电池系统包括:泵、电池箱体、均热板和电池模组。所述电池箱体设置有冷却液流道;所述均热板形成有真空腔体;所述均热板与所述冷却液流道通过所述泵连接,形成内循环散热回路。所述真空腔体还设置有与整车散热系统连通的第一冷却液接口;所述泵设置有与整车散热系统连通的第二冷却液接口,所述真空腔体、冷却液流道、泵以及所述整车散热系统连接,形成整车散热回路。在电池系统冷却过程中,本发明的内循环散热回路,为整车散热系统分担了所要散发的热量,降低了散热的消耗,节约了能源,提高了散热效率。
本发明公开了一种电动汽车热管理系统,包括第一热交换管路、第一温度传感器、第一电子水泵、第一三通管和第一溢流壶,第一热交换管路依次连接动力电池、充电机、电机控制器和电机,用于将充电机、电机控制器和电机产生的热量向动力电池进行传递,通过将动力电池通过管路与车辆的电机、充电机以及驱动电机控制器通过第一热交换管路相连通,通过第一热交换管路将电机、充电机以及驱动电机发热时产生的热量用于对动力电池的加热,促进了车辆工作时的废热利用,减少了能耗,提高了长期低温低速行驶时电池的加热需求。
本实用新型公开了一种与高效率热管理系统匹配的软包电芯模组,包括电芯模组,所述电芯模组包括热管理系统,所述热管理系统包括控制电芯模组降温的导热模块和控制电芯模组均温的储热模块。该电池能高效、可靠地实现热管理系统的冷却、加热和保温功能,为电池系统提供良好的温度环境,维持系统内部均衡,提高系统使用寿命。
本实用新型公开一种锂离子电池组模组盒、锂离子电池组及锂离子电池包,其中,所述锂离子电池组模组盒包括盒体,所述盒体具有上端开口的容纳腔,所述容纳腔用以容置锂离子电池,所述盒体包括用以围设形成所述容纳腔的多个围板结构,至少一所述围板结构为换热结构,所述换热结构的内部具有换热通道,所述换热通道内流通有换热液,所述换热结构用以通过所述换热液将所述容纳腔空间的热量交换至所述盒体的外侧。减少了热量传递的介质,实现了热量的无缝传递,提高热交换的效率,方便对锂离子电池组进行热管理。