本实用新型提供了一种热管理装置、电池模组和电源装置,热管理装置包括液冷扁管和绝缘导热垫,所述液冷扁管包括进液口、出液口以及连通所述进液口与所述出液口的冷却液流通通道,所述液冷扁管设置于所述电池模组内,且所述液冷扁管的至少一段位于任意相邻的两层子模组间的空隙处;所述绝缘导热垫呈套筒式套设于所述液冷扁管上且与所述液冷扁管贴合。将绝缘导热垫设置成套筒式的结构,在组合安装的过程中,直接将绝缘导热垫套在液冷扁管上即可,不必使用粘结剂,操作简单方便,工作效率更高。套筒式绝缘导热垫与液冷扁管贴合更紧密,导热效果更好。
本实用新型提供一种热管理装置及电源装置,其中,所述热管理装置应用于包括多个单体电池的电池模组。所述热管理装置包括设于所述电池模组的液冷扁管,所述液冷扁管的两端均设有进液口和出液口,所述液冷扁管其中一端的进液口与另一端对应的出液口通过管道连通。通过上述设置,可以中和所述液冷扁管内不同管道中的冷却液之间的温度差。
提供一种用于机动车辆的车底空气和热管理系统。该系统包含气罩,气罩具有可在打开位置与关闭位置之间选择性地移位的气窗系统。该系统还包含可在初始位置与展开位置之间选择性地移位的气坝。更进一步地,该系统包括控制系统,以使气窗系统在打开位置与关闭位置之间移位且使气坝在初始位置与展开位置之间移位,以便在空气动力学气流、车辆下面离地间隙以及发动机罩或发动机舱下面冷却之间提供最佳可能平衡。
一种示例性方法包括当电池组需要冷却时使流体循环通过热交换器和电池组,以及当电池组需要加热时使流体循环通过废气热回收装置和电池组。一种示例性系统包括电池组、热交换器、废气热回收装置、以及流体阀,该流体阀可移动到冷却位置和加热位置,冷却位置容许流体在热交换器和电池组之间循环,加热位置容许流体在废气热回收装置和电池组之间循环。
本公开涉及牵引电池的冷却系统。一种车辆包括牵引电池和冷却系统。所述冷却系统具有冷却器、散热器以及被布置为形成热回路的管道和阀,所述热回路被构造为通过冷却剂将热从牵引电池选择性地传递至散热器。所述车辆还包括格栅开闭器总成,所述格栅开闭器总成具有开口以及可移动以改变所述开口的有效横截面面积的遮板。所述控制器被配置为基于冷却剂的温度和周围环境的空气温度来操作所述遮板改变所述开口的有效横截面面积,以增加或减小通过散热器的空气流量。
本发明公开了一种用于锂离子电池热管理系统的相变材料热仿真分析方法,包含:步骤1,建立小球状相变材料热仿真分析模型;步骤2,基于非线性1阶球坐标热传导基础方程式和有限差分法解析;步骤3,针对相变过程,导入热晗与温度关系式;步骤4,针对小球状相变材料定义热仿真分析所需的材料属性、边界条件、初始温度;步骤5,采用EXCEL2010宏功能进行方程式运算,实现相变材料的热仿真分析;步骤6,试验验证。本发明能够在没有专业软件的条件下,通过EXCEL平台实现相变材料的热仿真分析,判断相变过程中物质变化状态、温度,为潜热散热 加热设计提供有力参考,可扩展至其他相变材料的热仿真分析,应用广泛。
本公开涉及管理用于车辆的高压电池的冷却模式。本公开提供一种车辆气候控制系统包括冷却系统,该冷却系统包括冷却器、冷却剂回路、制冷剂回路、泵和压缩机。冷却剂回路绕过冷却器。制冷剂回路包括冷却器。泵配置为使冷却剂移动通过冷却剂回路。压缩机配置为使制冷剂移动通过制冷剂回路。车辆气候控制系统还包括控制器,该控制器配置用于:响应于当泵正使流体移动通过冷却剂回路时电池的温度超过阈值,启动冷却器和压缩机。
本发明提供一种热管理装置及电池模组,涉及电池热管理技术领域,电池模组包括底板、设置于底板的多个单体电池和热管理装置。热管理装置包括导热部件、加热器件和散热器。多个单体电池划分为多层子模组,导热部件设置于多层子模组之间,导热部件与加热器件连接,导热部件与散热器连接。当电池模组内温度过高时,导热部件能够及时吸收热量并通过散热器带走热量,达到对电池模组散热的目的。同样地,当电池模组在低温环境下工作时,加热器件通过导热部件将热量传递给电池模组,以达到为电池模组加热升温的目的。从而使得电池模组工作在较佳充放电状态。
提供一种热管理模块和具有它的发动机,所述热管理模块包括:壳体(1);中间齿轮支架(2);中间齿轮(3),所述中间齿轮(3)安装在所述壳体(1)和所述中间齿轮支架(2)之间;多个旋转阀,所述多个旋转阀布置在壳体(1)中,并且所述中间齿轮(3)能够在所述多个旋转阀之间传递扭矩,其特征在于,所述中间齿轮(3)不设置中间齿轮轴孔,从而所述中间齿轮(3)在没有中间齿轮轴的情况下安装在所述壳体(1)和所述中间齿轮支架(2)之间。
本文描述了一种用于热管理的薄设计热传递设备。热传递设备使用相对于弹性机制是独立的或“悬浮”的冷板,该弹性机制被用于生成与发热设备的接触压力。与弹性机制相关联的桥组件被设计成横跨在冷板上并在弹簧变形时接触冷板,其因此允许冷板独立于弹性机制。冷板与弹性机制之间的独立性使得弹性机制中的变形能够驱动接触压力,而消除或减少在冷板中对应的变形。因此,热传递设备的组件可被做地相对的薄并具有比传统设计更少的刚度,但仍为有效的热管理提供可接受的接触压力和质量。
本发明公开了一种智能动力电池组及新能源汽车,所述智能动力电池组包括:一组串联电芯和智能控制器,所述智能控制器包括:CPU、检测单元、均衡单元、存储单元、通讯单元,其中,所述检测单元用于获取所述动力电池组的参数;所述CPU用于根据所述参数获取所述动力电池组的实时状态信息,将所述实时状态信息与所述存储单元中存储的预设信息进行比较,并根据比较结果判断所述动力电池组的状态是否异常;若是,将该判断结果通过所述通讯单元发送至与所述动力电池组匹配的电池管理系统BMS,并根据所述BMS的指令通过所述均衡单元对所述动力电池组进行均衡处理。根据本发明的智能动力电池组,解决了BMS和动力电池组、整车的配线杂乱、调试繁琐等问题。
本发明提供了一种电动汽车热管理装置,该装置在常规热管理系统基础上设置了电池组、控制器、电动机与换热器之间的热交换通道,从而实现了对余热的回收利用。同时,通过两组换热器回路的设置,可更加灵活的依据外界环境切换工作模式,例如由于电池组对高温耐受性不佳,因此可以将第二回路的启动温度设置于较低值,而电动机和控制器对高温耐受性较好,因此可以将第一回路启动温度设置于较高值,从而实现选择性控制,优化了能源利用率。装置运行时,开启串联有电机冷却夹套和控制器冷却夹套的第一回路或串联有电池组冷却夹套的第二回路,制冷剂流体从空压机经油分离器进入换热器,在液体泵的带动下实现循环式热交换。