本发明涉及一种支持多热沉重构的高速飞行器热管理系统,包括并联设置的第一进气阀、第二进气阀和第三进气阀,其下游连接有第一三通阀后分为第一支路和第二支路;第一支路上设有制冷系统进气阀,其下游连接第一换向阀、第二换向阀,再连接第一换热器或第二换热器,后至第三换向阀,之后连接至回热器热边处,回热器热边下游连接有制冷涡轮、第四换热器,第四换热器再连接回热器冷边,下游依次连接有第四换向阀和第一排气管;第四换向阀的出口连接至第二压缩机,第二压缩机连接至第一换向阀处;第二支路上设有供电系统进气阀,供电系统进气阀下游连接有燃烧室、供电涡轮和第二排出管。本发明的热管理系统,支持多热沉重构,各模式切换配合使用。
本发明提供了一种高速飞行器舱内统一热管理的设计方法,首先分析舱体所处的高温环境,找到舱内环境热的源头,确定高温热源温度;再明确舱内部件的耐温极限,设计热量传递路径;然后分析每个部件温度的影响因素及规律,确定每个部件的降温措施;最后在满足舱体和部件耐温极限的要求下,优化防热层 隔热层厚度,实现防热层 隔热层+空气总厚度最小、舱内有效空间最大。本发明充分利用结构舱体、设备热沉及部件最大耐热能力,解决“舱内空间利用最大化、结构轻量化”的问题。
本发明公开的一种动力电池包温度预调控系统和方法及热管理系统控制方法,涉及动力电池技术领域。该温度预调控系统包括电池包、热管理系统、汽车用电负载以及控制系统,控制系统包括控制器、采集模块和指令模块;采集模块采集电池包参数信息,与控制器中预设的参数值做比较后,通过指令模块对汽车用电负载和热管理系统进行控制,实现电池包温度预调控。本发明能够使电池包工作在较大的温度范围内,并能针对电池包出现的各种问题及时作出响应,尤其在放电电流较大、电池温升滞后时,预调节冷却液流量的大小,避免电池出现不可控的情况;同时,控制器具备不断学习,优化控制参数的功能,能够根据驾驶员驾驶习惯以及电池逐渐老化后不断进行调整。
本发明提供一种车辆热管理系统,通过与外界空气进行热交换,吸收电动机余热及保温等方式,在一般工作状态下提高了加热效率。即使在极端低温下,例如-40℃,相对于现有技术,依然有较高加热效率,从而提高新能源汽车的能源利用效率。
本发明提供了一种柴油机排气温度热管理系统,包括柴油机排气接入三通管,保温管、设置在保温管上的保温管开度阀,非保温管,设置在非保温管上的非保温管开度阀,辅助加热器排气接入三通管,辅助加热器,紧固件,后处理装置,以及温度传感器;所述保温管开度阀、非保温管开度阀、温度传感器、辅助加热器均连接ECU。本发明中的保温管、非保温管、保温管开度阀、非保温管开度阀及辅助加热器的协同作用可较好地控制进入后处理装置的尾气温度,使得柴油机尾气后处理装置在全工况范围内均处于较高效的工作区间。该系统适用于移动源、固定源柴油机尾气后处理装置。
本发明提供了一种动力电池系统热管理性能测试方法,包括动力电池系统低温工作性能、动力电池系统高温工作性能及动力电池系统温度均匀性性能的测试,并进行综合评价。本发明所述的动力电池系统热管理性能测试方法简单,可以预测动力电池系统的温度适应性,测试动力电池系统的热管理性能,为评估动力电池系统环境适应性提供了可靠的评估依据;测试方法从热管理性能和能耗等最重要的方面进行综合测评,达到对动力电池系统温度适应性客观、科学评价的目的,从而进一步方便对车辆的使用便捷性、续驶里程、使用寿命等作出评估。
一种空间用高功率设备热管理装置,包括热电模块、控制器、温度传感器、相变模块、绝热板以及热沉。所述热电模块利用帕尔贴效应实现冷端制冷,热端制热。所述热电模块一端与高功率设备通过高导热材料实现热传导,所述相变模块通过高导热材料与热电模块另一端连通,所述相变模块包含相变模块上盖板、相变模块腔体、相变模块栅格、相变材料以及隔热材料,所述相变材料存储于相变模块栅格中,所述相变模块底部通过高导热材料与热沉相连,所述热沉为平板结构,所述控制器包含电源模块、温度采集模块、热电驱动模块。该发明具有结构简单,调节灵活,适用范围广等优点,可以广泛应用于空间用高功率载荷的温度控制。
本实用新型实施例提供一种动力电池热管理系统,包括:电池冷却单元和电池灭火单元;在电池冷却单元中,气冷器将冷却后的气态二氧化碳输出至喷射器进气口,喷射器将由进气口进入的气态二氧化碳和由引射口引射到的气态二氧化碳输入至气液分离器,气液分离器将分离后的液态二氧化碳由液道口和膨胀阀输出至电池冷却蒸发器,电池冷却蒸发器通过液态二氧化碳对动力电池包进行冷却降温;在动力电池包内失火时,电池冷却单元停止工作,在电池灭火单元中,气液分离器将液态二氧化碳由液道口和电动阀输出至喷嘴,喷嘴通过喷发液态二氧化碳对动力电池包进行灭火降温。本实施例实现了在动力电池运行冷却的同时,能够对动力电池温热失控进行有效处理。
本实用新型公开了一种电池模组热管理系统,S型液冷管的A端和B端分别与进入腔和冷却腔贯通连接,冷却水从进入腔流入S型液冷管的A端的下方,经过S型液冷管内部从B端流入冷却腔,冷却后,从连接管流入进入腔,循环冷却。本系统的热管理系统效率较高,与现有的热管理系统相比,成本更低,结构更简单,并且散热效率更高,使用更方便。
本发明属于石墨烯制备技术领域,具体涉及一种用于热管理的复合材料及其制备方法。该复合材料包括间隔设置的两金属层和设置于所述两金属层的第一传热层和第二传热层,且所述第一传热层和所述第二传热层的传热界面相互垂直;该复合材料为水平方向和垂直方向融合为一体的热管理材料,是一种垂直位于热源与热沉之间的高效热管理结构,该复合材料具有较好的导热性和与集成电路芯片热膨胀系数匹配性。
本实用新型公开了一种电池热管理系统,包括壳体、控制器、半导体制冷片和设于壳体内的若干电池包、涡流管、电磁阀、第一温控开关和第二温控开关,半导体制冷片的冷端设于电池包的外表面上而吸收电池包产生的热量,半导体制冷片的热端设于壳体外部;所述壳体内设有隔板而将壳体内部空间分隔为电池腔和用于涡流腔;第一温控开关和第二温控开关设于电池腔内;涡流管的热气流输出端和冷气流输出端均通过电磁阀与电池腔连通。本实用新型通过涡流管和半导体制冷片同时制冷而对电池腔进行降温,使电池腔的温度下降到第一设定值和第二设定值之间,从而保证电池包工作在最佳温度状态下,工作稳定可靠,续航能力强。
示例性总成包括在第一位置和第二位置之间可移动的混合结构。混合结构在第一位置容许第一空气流。混合结构在第二位置容许第二空气流。第一空气流包括比第二空气流更多的已经移动穿过电动车辆的发动机舱的空气。