一种纯电动厢式轻型卡车,主要结构包括驾驶室、厢体、车轮、底盘,驾驶室和厢体分别安装在所述底盘上,厢体位于驾驶室后方,车轮安装在底盘下方,驾驶室内部安装有刹车踏板、油门踏板、档位控制器、多功能方向盘及组合仪表;底盘上包括四合一控制器、一体化液冷电池系统、中央电驱桥;四合一控制器安装在驾驶室正下方,通过信号线与所述档位控制器连接;一体化液冷电池系统设于底盘中部;中央电驱桥与车轮后轴同轴安装。一体化底盘设计,以动力电池为核心的电池平铺于底盘中央,同时降低轻卡的重心;中央电驱桥采用同轴布置方式,提高了动力输出效率;厢体采用三明治结构铝合金材质,更轻质环保。
本发明实施例提供了一种整车热管理系统的控制方法、车辆和存储介质,其中,整车热管理系统的控制方法包括:基于获取到的整车工作状态,确定与工作状态匹配的热管理操作的需求阈值;根据采集到的整车热管理系统的工况参数,以及工况参数与需求阈值之间的对应关系,生成整车热管理系统的需求信息;根据多条换热回路的集成关系与需求信息,生成控制信息;根据控制信息,配置冷媒调节装置的运行状态。通过本发明的技术方案,实现对整车热管理系统中的多条换热回路的协调控制,以防止整车热管理系统出现错误的控制方式与切换方式,进而提升整车热管理系统运行的安全性。
一种燃料电堆汽车的热管理系统和燃料电堆汽车,包括:第一换热回路,第一换热回路用于与燃料电堆换热,第一换热回路可选择性地与设有第一加热器的第一加热器换热管路连通或与设有高温散热器的高温散热器换热管路连通;暖风加热管路,暖风加热管路设有第二加热器,暖风加热管路用于对暖风芯体进行加热,且暖风加热管路可选择性地与第一换热回路连通;第二换热回路,第二换热回路用于与动力电池进行换热;第三换热回路,第三换热回路中设有低温散热器且用于与驱动电机及控制器进行换热。本申请的燃料电堆汽车的热管理系统,工作模式丰富,可满足多种工况下的使用需求,提升客户使用感知。
本申请提供了一种燃油车进气方法、装置、设备以及存储介质,涉及车辆技术领域。实现在兼顾对发动机舱内的热环境管理的同时,提高汽车的燃油经济性能。所述方法包括:检测车辆的当前运行状态;在所述当前运行状态为车辆启动且非故障的状态时,获取车辆与燃油管理指标对应的第一运行参数以及与热管理指标对应的第二运行参数;根据所述第一运行参数和所述第二运行参数,确定所述车辆的主动进气格栅的目标开度值;根据所述目标开度值,对所述主动进气格栅的当前开度值进行修正,以使所述主动进气格栅以修正后的开度值向车辆进气。
本发明实施例公开了一种电动汽车热管理系统及其控制方法、电动汽车。该电动汽车热管理系统包括:连接于第一制冷剂循环管路的压缩机、第一换热器、第一膨胀阀、第二换热器、第一三通阀、第二膨胀阀和第三换热器;所述第二换热器设置于电动汽车的乘员舱的外部;以及电器部件热管理组件、电池热管理组件和旁通管路组件。与现有技术相比,本发明实施例提升了电动汽车的采暖效果。
本发明提供了一种热管理控制方法、装置和汽车,本发明所述的热管理控制方法、装置和汽车,可以在越野路况下降低汽车的超温阈值,和 或获取汽车的工作温度,并根据工作温度调节汽车的行驶参数,从而增强汽车在越野路况下的散热性能,避免在越野路况下发动机高转速、大扭矩工况行驶时极易触发发动机超温保护,导致汽车出现发动机限扭、空调切断等现象影响驾驶体验,还可能影响驾驶安全,不需要额外加装大功率风扇、大规格散热器,降低了汽车重量和制造成本。
本发明涉及变速器领域,公开一种变速器热管理控制方法。获取变速器的油温T_n,计算预设时间段内变速器的产热量S_n,设定T_L和T_H为变速器的两个油温阈值,设定n_1为变速器的油温安全系数,设定S_a、S_b、S_c和S_d依次为数值从小到大的四个产热量阈值;当T_n≤T_L时,冷却液回路的开关阀关闭;当T_L<T_n≤n_1*T_H,且S_n≤S_a时,冷却液回路的开关阀关闭。本发明提供的变速器热管理控制方法,根据整车行驶状态计算变速器的发热量,基于发热量计算结果与变速器油温度确定变速器的冷却策略,散热效果好,对变速器发热量测量的延迟低。
本申请公开了一种车辆热管理系统,该热管理系统包括驱动电机冷却回路、发动机冷却回路以及电池温度控制回路,该驱动电机冷却回路、该发动机冷却回路以及该电池温度控制回路均与同一个膨胀水壶连通。本实用新型提供了一种车辆热管理系统,其通过三个回路共用一个膨胀水壶的结构设计,不仅减少了零件数量,节省了装配空间,还简化了装配步骤,降低了装配成本。
本发明提供了一种发动机排气热管理方法,包括:在发动机工作状态下,实时获取选择性催化还原反应的发动机排气管道的排气温度需求值;实时获取选择性催化还原反应过程中发动机排气管道的实际排气温度值;根据所述排气温度需求值与所述实际排气温度值的差值,计算发动机排气管道的加热需求电流值;根据所述加热需求电流值控制车辆的加热单元对发动机排气管道的排气进行加热。当发动机排气达不到SCR催化的目标温度时,热控制单元控制加热单元对排气管道内的排气进行加热,提高排气的温度,保证来SCR催化的效率。
本发明公开一种用于电动汽车动力电池的加热控制系统及方法,包括发动机、将冷却液通路实现串、并联切换的四通水阀、第一电子水泵、PTC加热器、三通水阀、鼓风机、暖风芯体、板式换热器、第二电子水泵、动力电池及热管理控制器,从而形成多个加热回路,为动力电池加热。本发明通过设置四通水阀,并利用发动机冷却水的余热,辅助1个高压PTC给电动汽车内采暖和动力电池加热,结构简单、紧凑,节省了布置空间和成本,同时,能够降低整车能耗,提升续航能力。
可在低温环境快速启动的燃料电池热管理系统,属于新能源技术领域。本实用新型包括氢燃料电池堆、冷却液箱、散热器、换热器和燃烧器,所述氢燃料电池堆一端连通空气输入管道和氢气输入管道,所述氢燃料电池堆另一端连通空气输出管道和氢气输出管道,空气输出管道和氢气输出管道分别通过支路管道与燃烧器连通,燃烧器的出口与换热器的换热器高温入口连通,换热器的换热器高温出口通向外界,冷却液箱与散热器建立连通,散热器入口与换热器的换热器低温入口相连,换热器的换热器低温出口与氢燃料电池堆相连,氢燃料电池堆另一端与冷却液箱入口相连。本发明的目的是为了提高燃料电池低温环境下启动速度。本实用新型结构简单、造价低,适于推广使用。
本发明公开了一种电池温度管理系统及方法、电池的电化学-热耦合模型的建模方法以及计算机系统,该系统包括:至少一个温度控制装置,温度控制装置与电池的多个部位中的至少一个部位对应,用于冷却和 或加热至少一个部位;与温度控制装置连接的至少包括热管理系统的电池管理系统,热管理系统用于确定至少一个部位对应的当前温度、电池的使用情况以及电池的当前环境温度;根据电池的使用情况以及电池的当前环境温度确定至少一个部位对应的理想温度;根据至少一个部位对应的当前温度以及理想温度向温度控制装置发送冷却和 或加热至少一个部位的热控制指令。本发明通过将电池温度自动调节至理想温度,以产生最佳的性能和增加其使用寿命。