本发明公开了一种氢能汽车用加热器及使用该加热器的氢能汽车热管理系统,本发明取消了调温器,通过第一流向调节电动球阀实现水流量的比例调节,实现加热循环 大循环 小循环自由切换,大大的简化燃料电池热管理系统复杂程度,实现了实现大小循环时流阻不增加的技术效果。
本发明公开了一种氢能汽车用加热器及使用该加热器的氢能汽车热管理系统,本发明取消了调温器,实现加热循环 大循环 小循环自由切换,大大的简化燃料电池热管理系统复杂程度,实现了实现大小循环时流阻不增加的技术效果。
本发明属于燃料电池技术领域,具体涉及一种燃料电池排氢阀控制方法,该燃料电池排氢阀控制方法包括控制燃料电池启动并进行检测初始化,计算氢气消耗量,根据氢气消耗量满足预设消耗量,计算排氢时间,控制排氢阀开启并计时,根据排氢阀的开启时间满足排氢时间,控制排氢阀关闭,根据发明实施例的燃料电池排氢阀控制方法,氢气消耗量可反映氢气管路中杂质的含量,根据杂质的含量进行排氢,降低排氢时间不合理造成氢气浪费或者氢气浓度不足导致的电堆故障的频率。
本实用新型公开了一种节能的电池采暖系统,包括第二水壶(21)、第四三通阀(17)、第三水泵(11)、PTC加热器(12)、第三三通阀(13)、第一热交换器(14)、第二电磁三通阀(16)、第二水泵(8)、电池(9)、电子四通阀(7)、第一水壶(20)、第二三通阀(2)、第一水泵(3)、DCDC(4)、MCU(5)、Motor(6)、第一电磁三通阀(10)和第一三通阀(1);该系统在车刚启动时,电池加热由PTC提供热能,当电机温度上升到最佳工作温度后,电池加热由电机的余热提供热能,同时关闭PTC,节约了PTC消耗的功率,从而提升了整车续航里程。
本实用新型涉及新能源技术领域,尤其是涉及一种电池模组嵌入式热管理装置。一种电池模组嵌入式热管理装置,包括模组壳体和设置在模组壳体上的隔板,所述的模组壳体内设置有主流道,隔板内设置有与主流道连通的侧流道,隔板与模组壳体之间形成用于放置电池单体的水冷腔,所述的模组壳体的一侧设置有与主流道连通的进液管,模组壳体的另一侧设置有与主流道连通的出液管,所述的主流道的底面上对应侧流道处设置有缓冲导流装置,所述的缓冲导流装置包括导流板,所述的导流板上远离进液管的一侧设置有复位弹簧,所述的导流板的底端转动连接在模组壳体上。本实用新型能够增大电池散热面积,提升电池散热效率,提升模组组装的集成度。
本实用新型涉及一种安全高效的圆柱电池模组的冷却系统,包括电池模组、支撑架、液冷板、电池箱体,电池模组包括若干单体圆柱电芯,电池模组对应卡接在下支撑架和上支撑架,液冷板对应设置在下支撑架下方,位于支撑架和圆柱电芯之间间隙中填充有导热绝缘介质。本实用新型设计合理简洁、合理新颖,采用特殊设置的液冷板,避免液冷管穿过电池模组,通过导热绝缘介质高效的将圆柱电芯产生的热量传递给位于圆柱电池模组下方的液冷板,实现动力电池充放电过程的安全、高效、均衡降温,确保圆柱电池的安全稳定运行,提升圆柱电池模组使用寿命。
本发明公开了一种动力电池模组热管理系统快速组装装置,包括:底板,组装装置的支撑安装件;侧部挡板,用于实现侧部限位和平衡张开及夹紧力的部件;活动组装架,设置有侧部挡板内侧用于实现电芯单体和液体冷却水管组装的活动架,所述的活动组装架并排设置有多组,每组活动组装架上设置有若干电芯安装孔;活动组装架相互之间设置有液体冷却水管夹道;所述的活动组装架相互之间通过设置在两端的滑动轴和铰链件活动连接;间隙调整机构,设置在活动组装架的两端带动活动组装架做开合运动的机构。还公开了组装方法。该组装装置及组装方法,组装效率高,能动实现批量化组装,通用性好,电池单体不易被破坏,保证了电池模组的质量,安全性能好。
本公开公开了一种汽车用空调集成燃料电池热管理系统及控制方法、装置,该系统包括:控制单元,所述控制单元分别与空调制冷系统、燃料电池冷却液循环系统和燃料电池组连接;所述空调制冷系统与燃料电池冷却液循环系统通过板式换热装置连接,进行热量交换;所述燃料电池冷却液循环系统与燃料电池组连接,所述控制单元采集燃料电池组数据控制所述燃料电池冷却液循环系统对燃料电池组进行低温冷启动预热,以及控制空调制冷系统与燃料电池冷却液循环系统冷却燃料电池组。
本发明属于机械产品的多学科设计优化技术领域,并具体公开了一种锂离子电池液冷热管理系统稳健设计优化方法。包括以下步骤:选择锂离子电池液冷热管理系统中的优化对象,并定义设计变量;抽取N组样本点,并获取每组样本点所对应的实际电池温度差和实际压降;通过模型验证和确认选择最佳代理模型;设定每组样本点的波动区间,在该波动区间中均匀选取每组样本点所对应的M组新的样本点;量化N×M组新的样本点所对应的理论电池温度差和理论压降的不确定性。本发明解决了传统设计方法中人为忽略参数和代理模型不确定因素导致设计结果不稳健,以此来获取锂离子电池液冷热管理系统稳健设计优化方法,从而提高锂离子电池产品的性能。
本发明提供一种可插拔扩展的温度测量方法,具体为:选择受测系统内的板卡作为基础板卡,在基础板卡上预设有可插拔扩展接口;设计扩展组件:扩展组件由可插拔端子、柔性线缆、测温单元、粘性材料组成;当需要对系统内相应位置进行温度测试时,将扩展组件连接到基础板卡的可插拔扩展接口,并将扩展组件的测温单元通过粘性材料粘接固定在需要测温的位置,完成温度的测量。本发明可在不占用板卡较大空间的情况下,为系统提供测试系统内部各处温度的方法;测试系统内部温度可以不局限于板卡上固定位置,可根据需要将扩展组件粘贴在系统内不同位置进行温度测量。
本发明公开了一种智能动力电池组及新能源汽车,所述智能动力电池组包括:一组串联电芯和智能控制器,所述智能控制器包括:CPU、检测单元、均衡单元、存储单元、通讯单元,其中,所述检测单元用于获取所述动力电池组的参数;所述CPU用于根据所述参数获取所述动力电池组的实时状态信息,将所述实时状态信息与所述存储单元中存储的预设信息进行比较,并根据比较结果判断所述动力电池组的状态是否异常;若是,将该判断结果通过所述通讯单元发送至与所述动力电池组匹配的电池管理系统BMS,并根据所述BMS的指令通过所述均衡单元对所述动力电池组进行均衡处理。根据本发明的智能动力电池组,解决了BMS和动力电池组、整车的配线杂乱、调试繁琐等问题。
本发明提供了一种低轨遥感微纳卫星及其热设计方法。卫星包括卫星平台、体装帆板、光学载荷。热设计方法包括卫星平台热设计和光学载荷热设计;其中,卫星平台热设计进一步包括散热面设计、隔热设计、等温性设计;光学载荷热设计进一步包括调焦环与主次镜、矫正镜热控设计,主次镜支撑筒热控设计,以及,电子学热控设计。本发明的有益效果:通过对该型号低轨遥感卫星的研制,实现了小型微纳卫星在平台与载荷上的一体化热控设计,热控设计合理可行,满足各项指标要求,达到预期热控效果,并留有足够的余量。