公开了一种用于对由多个电池单体或容纳一个或多个电池单体的容器组成的电池单元进行热管理的热交换器。该热交换器具有由成对的外板和中间板形成的主体部分,中间板在热交换器的任一侧上限定主传热表面,用于接触电池单体或容器中的至少一个的对应表面。中间板与外板一起形成多个交替的第一流体流动通道和第二流体流动通道,通过第一流体流动通道的流动方向大致与通过第二流体流动通道的流动方向相反。第一流体流动通道和第二流体流动通道形成在中间板的相对侧上,并且在对应的端部处流体地相互连接,从而形成通过热交换器的主体部分的逆流布置。
本发明公开了一种零能耗的新能源汽车热管理系统,特点是包括空气压缩系统、制冷 制热系统、电池箱体和盘管,空气压缩系统中的空压机通过第一风能转换机构驱动,制冷 制热系统中的压缩机通过第二风能转换机构驱动,制冷 制热系统中的蒸发器与电池箱体的进口端相连接,空气压缩系统与蒸发器相连接,电池箱体内设置有电池组,电池组的空隙处填充有相变材料,盘管的一端通过管道分别与电池箱体的进口端、出口端相连接,盘管的另一端与车内出风口相连通;优点是该热管理系统不需要消耗电能,且能同时对动力电池进行热管理和对车内环境进行温度调节。
本发明提供了一种芯片动态热管理中热传感器温度实时校准的方法。首先,利用平滑滤波得到热传感器温度预测值;然后,通过卡尔曼滤波将温度预测值和观测值进行融合,得到第一次热传感器温度校准值;接着,利用第一次卡尔曼滤波得到的校准值和相关性系数判断热传感器观测值偏大或偏小,并对热传感器温度观测值进行校正;最后,再次利用卡尔曼滤波将校正后的观测值和平滑滤波得到的预测值进行融合。利用本发明方法可以得到更加准确的热传感器温度估计值,实现热传感器温度的实时校准。
本实用新型涉及带有热管理的活塞摩擦力测试装置,其特征在于该装置包括活塞顶部传热测控子装置、活塞底部传热测控子装置、缸套水腔侧传热测控子装置、支承钢架和缸套 活塞间测摩擦机构;所述活塞顶部传热测控子装置、缸套水腔侧传热测控子装置和活塞底部传热测控子装置由上至下依次固定在支承钢架上,缸套 活塞间测摩擦机构安装在支承钢架的内部;所述活塞顶部传热测控子装置包括喷火嘴支承和喷火嘴,所述喷火嘴支承安装在活塞上部,为圆盘形,中间部位开一个圆孔,所述喷火嘴穿过该圆孔,并固定在喷火嘴支承上。该装置能满足研究传热对摩擦影响的需求,在测量缸套 活塞间摩擦力的同时,能对活塞顶部、裙部的温度场进行精确控制。
本发明公开了一种插电式混合动力车热管理系统,属于混合动力车技术领域。一种插电式混合动力车热管理系统,包括主冷循环路径,该主冷循环路径通过主散热器对发动机、变速箱进行散热,其特征在于,所述系统还包括:暖风制热循环路径,由发动机冷循环支路出口、电制热器、暖风换热器、循环泵一、双通阀一、发动机冷循环支路入口连通构成,所述暖风制热循环路径至少包括发动机工作时的发动机冷循环生热制热工作模式和发动机不工作时的电制热器制热工作模式,既能够满足整车的暖风要求,又充分利用了发动机散热产生的废热,使得整车内的能源得到合理循环和利用,从而达到了节约能源的效果。
本实用新型涉及一种电动汽车动力总成能量流测试系统,由电动汽车动力总成系统、热管理系统以及数据采集系统组成。动力总成系统包括动力电池组、电机控制器和驱动电机;热管理系统包括三个独立的液流换热系统,液流换热系统包括恒温水箱、水泵、过滤器、阀门和管道;数据采集系统包括NI控制器、温度传感器、流量传感器、功率分析仪、测功机、测功机控制器和上位机。动力总成各部件分别由各自的液流换热系统进行温度控制。上位机通过NI控制器向液流换热系统、电机控制器发出控制信号。分别采用功率分析仪和测功机测量电参量和机械参量,可以测试不同温度和运行工况下,电动汽车动力总成的能量流及能量损耗情况。
本发明公开了一种基于微通道热管和相变材料结合的动力电池热管理系统,包括多个电池单体、微通道热管、开有通孔的箱体、箱盖、焊接在箱体侧壁的翅片、夹板。所述微通道热管包括多个蒸发端和冷凝端,所述蒸发端与电池单体间隔设置,所述蒸发端并联与冷凝端形成回路,所述电池单体与蒸发端通过夹板间隔开来,两个夹板之间填充相变材料,所述冷凝端通过箱体上的通孔伸出到外面并安装在所述翅片上。本发明具有散热量大、散热效率高、散热速率快、成本低、安全性高、节能环保、结构简单等优点。
本发明公开了一种用于高功率光纤激光器的相变蓄冷热管理系统,包括相变材料存储箱、相变材料、可控阀、冷媒水泵和控制器,所述相变材料放置于相变材料存储箱内,所述相变材料的熔点低于激光器的工作温度,所述相变材料存储箱内填充有液体冷媒;所述相变材料存储箱通过管路与可控阀、冷媒水泵相连通,在控制器的控制下,通过冷媒水泵的驱动将液体冷媒经管路送至激光器完成冷却。本发明具有结构简单、适用范围广、能耗低等优点。
本发明公开了一种应用复合相变材料的散热肋片的圆柱形电池组散热装置及方法,散热肋片由主肋片和副肋片组成,主肋片为全封闭的壳体结构,内部封装有相变材料,由主肋片表面向两侧扩展副肋片,副肋片末端与电池表面相切接触。可通过调整肋片的尺寸与间距、相变材料的厚度来适应不同圆柱形电池的规格尺寸,满足散热与保温性能要求。电池组底部有固定底座,可加固电池组,提高抗震能力,并可外接风扇增强对流,加强散热和保温效果。本发明散热装置充分利用相变材料的优势,提高电池组的温度均匀度,符合轻量化要求,并有效防止热灾害在电池堆积中的传播,提高电池组的热安全性,可广泛应用于汽车、航空航天等多个领域。
一种燃料电池 锂电池混合动力热管理系统及运行方式属于燃料电池领域。装置包括燃料电池供气系统、空气流动通道、冷却水流动通道、水冷锂电池包、加热电阻丝、冷却水水箱、水冷燃料的电池、单向电磁阀、电控模块。燃料电池供气系统为燃料电池提供燃料,冷却水由锂电池放电加热,经过燃料电池,通过电控模块判断各温度传感器温度来判断打开所对应的电磁阀实现对不同流道开关的控制,从而实现对燃料电池 锂电池混合动力系统的热量进行管理。本发明在环境温度较低时改善燃料电池冷启动性能,加快燃料电池启动速度;燃料电池所释放的热量可对锂电池进行加热从而使锂电池达到适宜温度进行充放电。当环境温度较高时,也可以对锂电池进行降温。
本发明公开了一种电动汽车电池包热管理及温度均衡控制方法,包括电池模组、电池箱、BMS及报警装置,电池模组周围布置加热膜,电池箱内等距分布多个温度传感器并安装多个可控转角的风扇;BMS通过温度传感器监测电池包温度评价电池状态,并将0℃、33℃、53℃作为温控阈值,联合温升速率和温差作为判定条件对电池包进行热管理,包括采取加热膜选择性加热和精确控制风扇转角、开启时刻以及冷却风量的措施来维持电池包温度在工作范围内。本发明有效避免了电池温升过高、温差过大,确保电池温度变化平稳和均衡的特点,提高锂电池使用寿命。
本发明提供一种车辆的热管理和过滤系统。热管理系统包括用于调节电池温度的热环路。过滤器位于电池的上游以过滤液体冷却剂。热管理系统还包括与电池热环路流体连通的第二热环路。第二热环路对除了电池之外的车辆系统进行热控制。电池热环路包括多个电池单体。多个换热器翅片位于各个电池单体之间,以提供冷却剂来调节电池温度。过滤器具有基于翅片的过滤器特性的过滤传递函数。