本发明公开了一种电动汽车动力系统的测试系统和电动汽车。电动汽车动力系统包括变频器和与变频器连接的动力电机,测试系统包括:车载动力电池,所述车载动力电池的输出端连接变频器的输入端;热管理管路,用于对车载动力电池执行热管理;与车载动力电池连接的快速充电机;与动力电机连接的负载电机;功率分析仪,与车载动力电池的输出端、变频器的输出端和动力电机的输出端分别连接。本发明采用车载动力电池代替专用直流电源,可以降低成本,并且减少安装工作量。
本发明实施方式公开了电动汽车动力电池的热管理管路及其均衡方法和标定系统。热管理管路包括冷却液主回路及分别连接到冷却液主回路的多个分支管路;每个分支管路包括用于冷却相对应的电池模组的水室,在每个分支管路的水室的入口布置有第一压力表;在每个分支管路的水室的出口布置有第一流量计;在每个分支管路的入口和每个分支管路的水室的入口之间布置有第一阻尼阀安装位;其中在第一阻尼阀安装位可拆卸地安装有可调阻尼阀组件或基于该可调阻尼阀组件被标定的固定阻尼阀组件。本发明实施方式可以提高电池之间的温度均衡性。
本申请公开了一种电动汽车空调系统预约控制方法及系统,通过车载DVD获取输入的空调预约信息,并向热管理控制器发送DVDHVACbooking信号;当点火开关由ACC档切换至OFF档时,车载DVD获取热管理控制器反馈的DVDHVACbooking信号状态为1时,在获取空调预约的确认信息后发送至整车控制系统由此确认空调预约成功,使车载DVD下电并进入计时;当计时结束到达预约时间时,由热管理控制器获取车外温度传感器检测的车外温度,判断当前整车所需热负荷并依结果开启制冷或制热系统。通过上述提前预约,提前开启制冷或制热系统,使电动汽车在用户未进入时提前对车内的温度进行调节,提升了用户的体验和感受。
本申请提供一种汽车动力电池冷却系统和电动汽车,包括:由空调管路依次连接的空调低压管、压缩机、冷凝器和空调高压管,由油冷却管路依次连接的油冷却器、电池包、油壶和油泵,热管理模块控制器;油冷却器内设置有电磁膨胀阀,油冷却器的进风口与空调高压管的出风口相连、出风口与空调低压管的进风口相连,油壶内存储有冷却液;热管理模块控制器与所述压缩机、冷却器、电磁阀、电磁膨胀阀和油泵相连,用于当获取到整车控制器发送的快充指令后,控制所述电磁膨胀阀开启,依据整车控制器发送的冷却需求功率调节所述压缩机的功率,依据所述整车控制器发送的冷却需求流量调节所述冷却泵的输出流量。提高了所述电池包中的动力电池的冷却效果。
本发明公开了一种电动汽车储能系统热管理回路的加注系统和方法。热管理回路包括:冷却液主回路,该冷却液主回路包括膨胀罐,该膨胀罐包括进液管和盖子;分别并联到冷却液主回路的多个分支管路,每个分支管路包括电池模组的水室;加注系统包括:气体加注设备,该气体加注设备的出液管与膨胀罐的进液管联通;气源,该气源与加注设备联通。
本发明实施方式公开了一种电动汽车的电池管理系统和电池管理方法。系统包括:温度传感器,用于检测所述电池的温度;控制单元,用于当所述温度低于预先设定的充电温度门限值时,判定不允许为所述电池充电,并启动热管理单元;热管理单元,用于加热所述电池。
本发明实施方式公开了一种电动汽车动力电池的热管理管路和均衡方法。所述热管理管路包括冷却液主回路(1)及分别连接到所述冷却液主回路(1)的多个分支管路(2);每个分支管路(2)包括用于冷却相对应的电池模组的水室(101),在每个分支管路(2)的水室(101)的入口布置有第一压力表(102);在每个分支管路(2)的水室(101)的出口布置有第二压力表(105);在每个分支管路(2)的入口和每个分支管路(2)的水室(101)的入口之间布置有第一阻尼阀安装位;其中在所述第一阻尼阀安装位可拆卸地安装有可调阻尼阀组件(109)或基于该可调阻尼阀组件(109)被标定的固定阻尼阀组件(222)。
本发明公开了一种电池模组的热量传递系统、电池管理系统和电动汽车。包括:制冷回路;热处理回路;热交换器,所述热交换器布置在所述制冷回路和热处理回路之间;其中所述热处理回路包括:冷却液主回路及分别连接到所述冷却液主回路的多个分支管路;每个分支管路包括电池模组的水室。
本发明是有关一种新能源车辆的集中式多工况热管理系统,包括制冷剂回路和冷却液回路;制冷剂回路包括压缩机、和压缩机连接的冷凝器、并联于压缩机和冷凝器两端的乘员舱制冷剂支路和动力电池组制冷剂支路,乘员舱制冷剂支路包括电磁阀和给乘员舱制热的蒸发器,动力电池组制冷剂支路包括电磁阀和给冷却液降温的热交换器;冷却液回路包括PTC加热器、并联于PTC加热器两端的乘员舱冷却液支路和动力电池组冷却液支路,乘员舱冷却液支路包括泵和给乘员舱制热的加温器,动力电池组冷却液支路包括电磁阀、泵、热交换器、动力电池组、回流阀和单向阀。本发明可以利用一套制冷 制热元件实现新能源车辆对乘员舱和动力电池组进行独立热管理。
本发明是有关一种锂离子动力电池包恒温热管理系统,其包括:锂离子动力电池包,包括:电池箱体、多个单体锂电池、加热片、电子制冷片和风扇;电源输入切换开关,具有连接外部电源和内部电源的两个接口;DC AC变频逆变控制器,将该电源输入切换开关输入的电源变压变频后输出给该制冷片或该加热片;电压采集模块,采集该输入电源的电压DC AC变频逆变控制器的输出电压;温度采集模块,采集该单体锂电池的温度;主控制器,根据该单体锂电池的温度,控制该加热片或该电子制冷片,对该单体锂电池进行加热或制冷。本发明能够在对单体锂电池温度进行恒温控制或者在合理温度范围之内。
本发明提供了一种电动汽车动力电池的热管理试验装置及方法,本发明的技术方案是利用恒温箱替代现有的热管理方案的试验的环境仓,不需将整车置于环境舱中,而仅仅将动力电池置于恒温箱中进行热管理试验,以获取在全天候温度环境下电池包热管理的控制策略和参数,与现有的热管理方案的试验制定方法相比,本发明试验效率更高,并且因为不需要将整车置于环境舱中,因此也极大的降低了试验成本。另外,因为不需要同整车一同置于环境舱中,所以本发明的方案可以与汽车整车设计和制造同时进行,不需要待整车全部完成制造后再进行试验,进而也提高了整车设计、生产、检测的整体效率。
本发明实施方式公开了一种新能源汽车的热管理系统及其调节方法和新能源汽车。热管理系统包括:电机水路(1);电池水路(2);位于电机水路(1)和电池水路(2)之间的交流水路(3),用于将电机水路(1)的热量引入电池水路(2)。交流水路(3)包括:与电机水路(1)的出水口连接的开关阀(V1);与开关阀(V1)连接的调速阀(P3);与电机水路(1)的回水口连接的单向截止阀(V2);与单向截止阀(V2)连接的交流水路流量传感器(F3)。本发明实施方式通过交流水路(3)将电机水路(1)与电池水路(2)相接通,在电池需要加热时,可以利用电机水路(2)的热量对电池水路(1)中的电池组进行加热,从而节约能源。