本发明公开了一种燃料电池热管理系统和具有其的车辆。所述燃料电池热管理系统包括燃料电池组、水循环驱动装置、空调暖风系统、散热器、温度传感器、压力传感器和控制器。燃料电池组具有进水口和出水口;水循环驱动装置与出水口相连;空调暖风系统分别与水循环驱动装置的出水端以及燃料电池组的进水口相连;散热器分别与水循环驱动装置的出水端以及燃料电池组的进水口相连;温度传感器用于检测进水口处的水温;压力传感器用于检测进水口处的压力;以及控制器,控制器分别与温度传感器、压力传感器和水循环驱动装置相连。根据本发明实施例的燃料电池热管理系统,使燃料电池组的工作温度及循环水管道压力保持在合理范围内。
本实用新型公开了一种液氢加氢站热管理系统,液氢加氢站包括液氢储氢罐,热管理系统包括:蒸发罐,蒸发罐与液氢储氢罐连接,用于存储从液氢储氢罐泄漏的气态氢;一体化换热器,一体化换热器与液氢储氢罐进行换热,从而将液氢储氢罐内的液态氢转化为气态氢;清洁能源热能提供装置,清洁能源热能提供装置与一体化换热器连接,为一体化换热器提供热能;压力调节器,压力调节器分别与蒸发罐和一体化换热器连接,用于对气态氢进行加压。本实用新型通过清洁能源热能提供装置为一体化换热器提供进行热交换的热能,将液态氢转化为气态氢,进而实现气态氢加注,降低了传统能源使用,提高了可再生能源和清洁能源的使用率。
本实用新型提供了一种加热热管理系统和汽车,涉及电动汽车领域。该加热热管理系统包括:位于同一循环回路上的水箱、电子水泵和电池包;所述水箱的外部两侧分别设置有风扇和发热仓,所述发热仓包括一鼓包,所述鼓包连通所述水箱与所述发热仓。本实用新型的方案避免了现有技术的动力电池在寒冷条件下不能充分发挥其自身充放电能力,导致整车续航低或充电时间长的问题,提升车辆的品质和用户的体验,改善车辆的电池的利用效率。
本发明公开了一种动力电池热管理控制系统,包括,电池管理模块,用于采集车辆电池系统的温度信息,并将温度信息发送给车辆远程通讯模块;接收车辆远程通讯模块发送的制冷指令,并将制冷指令发送给空调制冷控制模块;道路信息获取模块,用于获取车辆的路径规划信息和路况信息,并将信息发送给车辆远程通讯模块;车辆远程通讯模块,接收温度信息、路径规划信息和路况信息,并将信息发送给处理模块,接收处理模块发送的制冷指令,并将制冷指令发送给电池管理模块;处理模块,接收车辆远程通讯模块发送的信息,基于信息生成制冷指令,并将制冷指令发送给车辆远程通讯模块;空调制冷控制模块,根据制冷指令控制车辆空调系统。
本发明提供一种电池温场模拟装置、系统和电池热管理的验证方法。电池温场模拟装置包括:壳体;产热单元,用于产生热量,安装于壳体的内部;导热介质,填充于产热单元和壳体之间;控制器,用于采集并发送产热单元和导热介质的温度数据,并控制产热单元以一预设方式产生热量。本发明实施例的电池温场模拟装置可以在电池的热管理结构和策略设计完成后,对设计进行快速有效地验证,减少了试验周期和所需的辅助设备,大大减少了测试成本。另外,该电池温场模拟装置可以模拟不同型号电池的不同发热状态,具有很强的适应性,同时安全可控,便于试验人员调整参数和记录测试结果,有利于试验结果的准确性和科学性。
本发明公开了一种汽车的热管理电池系统、热管理方法及电池控制装置。所述汽车的热管理电池系统包括:泵、电池箱体、均热板和电池模组。所述电池箱体设置有冷却液流道;所述均热板形成有真空腔体;所述均热板与所述冷却液流道通过所述泵连接,形成内循环散热回路。所述真空腔体还设置有与整车散热系统连通的第一冷却液接口;所述泵设置有与整车散热系统连通的第二冷却液接口,所述真空腔体、冷却液流道、泵以及所述整车散热系统连接,形成整车散热回路。在电池系统冷却过程中,本发明的内循环散热回路,为整车散热系统分担了所要散发的热量,降低了散热的消耗,节约了能源,提高了散热效率。
本实用新型公开了一种电池包的热管理系统,包括:多个换热板、多个支撑板、多个集流管和管接头。所述换热板内设有纵向贯通的换热腔;多个所述换热板与多个所述支撑板沿水平方向交错设置;所述集流管设置在所述换热板的端部且与所述换热腔连通;所述管接头连接在相邻的两个所述集流管之间,且所述管接头横跨所述支撑板。该热管理系统的整体结构更紧凑,整体重量较轻,且整体换热效果更好。
本发明公开了一种液氢加氢站热管理系统,液氢加氢站包括液氢储氢罐,热管理系统包括:蒸发罐,蒸发罐与液氢储氢罐连接,用于存储从液氢储氢罐泄露的气态氢;一体化换热器,一体化换热器与液氢储氢罐进行换热,从而将液氢储氢罐内的液态氢转化为气态氢;清洁能源热能提供装置,清洁能源热能提供装置与一体化换热器连接,为一体化换热器提供热能;压力调节器,压力调节器分别与蒸发罐和一体化换热器连接,用于对气态氢进行加压。本发明通过清洁能源热能提供装置为一体化换热器提供进行热交换的热能,将液态氢转化为气态氢,进而实现气态氢加注,降低了传统能源使用,提高了可再生能源和清洁能源的使用率,实现清洁高效地液态氢转化为气态氢。
本发明提供一种热管理系统及电动汽车,涉及整车控制技术领域,所述热管理系统包括:制动盘散热回路;通过电子三通阀与制动盘散热回路连接的保温装置;通过电子四通阀与所述保温装置连接的电池包加热回路;分别与所述制动盘散热回路、所述电子三通阀、所述电子四通阀、所述保温装置和所述电池包加热回路连接的控制器;所述控制器根据所述制动盘散热回路的当前温度和当前压力控制所述保温装置与所述制动盘散热回路的连通或断开;所述控制器还用于根据电池包的加热信号、所述保温装置的当前温度和当前压力,控制所述保温装置与所述电池包加热回路的连通或断开。本发明的方案实现了利用制动盘散热回路中的余热为电池包加热,节约了整车能耗。
本发明公开了一种用于车辆的整车热管理系统及具有其的车辆,用于车辆的整车热管理系统包括:制冷剂循环系统和电池热管理循环系统以及辅助换热器,制冷剂循环系统和电池热管理循环系统通过气冷热交换器和蒸发热交换器相连,辅助换热器用于实现整车热管理系统在不同工作模式下的切换。根据本发明实施例的用于车辆的整车热管理系统,气冷热交换器以及蒸发热交换器既参与制冷剂循环系统的工作,又参与电池热管理循环系统的工作,不仅可以保证制冷剂循环系统和电池热管理循环系统均可以正常运行,又可以保证充分利用了车辆的动力。通过设置辅助换热器可以增加整车热管理系统工作时的工作部件的数量,保证整车热管理系统的工作能力得以最大程度发挥。
本实用新型提供一种整车热管理系统及汽车,该整车热管理系统包括:冷却液循环系统,包括第一冷却液通道;制冷剂循环系统,包括第一制冷剂通道;第一气冷器,所述第一冷却液通道和所述第一制冷剂通道并联在所述第一气冷器的内部;所述第一冷却液通道内的冷却液和所述第一制冷剂通道内的制冷剂在所述第一气冷器的内部进行热交换;本实用新型实施例采用自加热、直冷技术,整车热管理系统仅包括两个系统回路,分别为冷却液循环系统回路和制冷剂循环系统回路,系统集成度高,动力原件少,耗功小。
本发明公开了一种电池包的热管理系统,包括:多个换热板、多个支撑板、多个集流管和管接头。所述换热板内设有纵向贯通的换热腔;多个所述换热板与多个所述支撑板沿水平方向交错设置;所述集流管设置在所述换热板的端部且与所述换热腔连通;所述管接头连接在相邻的两个所述集流管之间,且所述管接头横跨所述支撑板。该热管理系统的整体结构更紧凑,整体重量较轻,且整体换热效果更好。