本发明涉及汽车电池系统控制技术领域,公开了一种新能源汽车热管理系统,包括冷凝子系统、动力总成子系统和电池包子系统,由控制系统进行控制,所述冷凝子系统包括压缩机、冷凝器和蒸发器组成的冷却回路,所述动力总成子系统包括电机、第一冷却水箱、第一水泵以及管路形成的动力回路,所述电池包子系统包括电池包、第二冷却水箱、第二水泵以及管路形成的电池包回路,在所述动力回路连接至第一水箱的进口位置的管路和所述电池包回路连接至第二水箱的出口位置的管路之间安装控制阀,所述控制系统包括设置在系统中的若干传感器和控制模块。本发明给新能源汽车辆提供了可在两种冷却回路模式下切换的热管理系统,以适应汽车不同的工况。
本发明公开了一种发动机热管理系统,其包括:发动机进气管、发动机进气总管、中冷器和增压器压气机,发动机热管理系统还包括:控制进气温度旁通管路,其两端分别连接中冷器入口和中冷器出口,且与中冷器并联,控制进气温度旁通管路上设置有第一旁通比例阀,通过调节第一旁通比例阀的位置比例实现不同流量的中冷前进气流量旁通;控制进气量旁通管路,其两端分别连接压气机入口和压气机出口,且与增压器压气机并联,控制进气量旁通管路上设置有第二旁通比例阀,通过调节第二旁通比例阀的开度实现不同工况的进气流量需求;以及温度传感器,其设置于发动机进气总管的管路上,用于测量进入发动机进气总管的进气温度,EUC能够采集进气温度的测量值。
本发明提供了一种用于电动车辆的热管理系统,包括:热泵空调组件,包括压缩机1、液体源的第一换热器2、液体源的第二换热器13和相关联的第一电子膨胀阀12、气液分离器14,压缩机1、第一换热器2、第一电子膨胀阀12、第二换热器13和气液分离器14构成第一制冷剂回路,在电池包加热模式下,制冷剂经由第一制冷剂回路循环,第一换热器2中冷却液吸收制冷剂热量后对电池包20加热。根据本发明所提供的热管理系统,集成了车内电池包冷却系统和电机冷却系统,取消了电池包冷却系统中的PTC水暖加热器,三个系统联合工作,整车热管理效率更优。
本发明公开了一种电动汽车热管理系统,其特征在于,包括制冷剂回路及冷却液回路,所述制冷剂回路包括低压储液器、压缩机、冷凝器及第一蒸发器与第二蒸发器;冷却液回路包括电池组、电机逆变器、电机三者的冷却管路、冷却液水箱、电子水泵、PTC水加热器及第二蒸发器、第一换热器与第二换热器,PTC水加热器的出口端分别连接第二蒸发器、第二三通调节阀,第二三通调节阀的另两路分别连接第一换热器、第二换热器;第一蒸发器、第一换热器设于空调箱体内。本发明可以根据环境温度自动判断运行模式,并实现自动切换,可以根据不同季节使用不同的热管理运行模式,实现电动汽车热管理的能源综合利用,最大限度的增大电动车的续航里程。
本发明涉及电动汽车动力电池组的热管理技术领域,尤其涉及一种基于相变材料均热与储热技术的电动汽车电池热管理系统。安装在汽车上,并与汽车的ECU相连接,是由均热模块、储热模块、供水模块、冷却系统L和加热系统R组成;冷却系统L调速阀、加热系统R调速阀、冷却系统L温度传感器、加热系统R温度传感器和供水模块换向阀与汽车电子控制单元ECU相连组成温度控制回路。应用本发明,提高了电池单体和电池组的温度一致性及冷却和加热速度,同时具有高温冷却功能和低温加热功能,降低了能量消耗,减少了对电池组的容量和寿命的损害;结构简单成本低廉。
本发明为使用润滑油的智能缸套热管理系统,该系统包括内燃机油冷却缸套、电控机油冷却器、补偿桶、油泵、电控阀、温控器、温度传感器和润滑油加热器,内燃机油冷却缸套回路出口端接连电控阀入口端;所述电控阀为基于一个温度传感器的电控阀,电控阀小循环出口端连接在补偿桶和油泵之间的回路中;电控阀大循环出口端连接电控机油冷却器入口端;在内燃机油冷却缸套的回路入口端和油泵之间的管路上设置润滑油加热器,在靠近内燃机油冷却缸套的回路入口端附近设置温度传感器,温度传感器和润滑油加热器均与温控器电连接。该系统将润滑油作为缸套热管理的流体介质,以实现能够达到200℃以上的缸套热管理,从而降低活塞组摩擦功耗。
本发明公开了一种新能源汽车电池热管理系统,包括电池换热单元和空调换热单元,电池换热单元包括设置在电池组内的电池冷却板,板式换热器以及电子水泵;空调换热单元包括压缩机和集成有电磁阀的电磁热膨胀阀,电磁热膨胀阀通过管道连接至板式换热器;压缩机的出口依次连接有车外换热器、节流孔管以及闪蒸器,闪蒸器的汽出口连接至压缩机的中压输入口,闪蒸器的出口分别连接有电子膨胀阀和电磁热膨胀阀,电磁热膨胀阀与压缩机之间连接有气液分离器;电子膨胀阀的出口连接至空调的内蒸发器,内蒸发器的出口连接至气液分离器。本发明具有结构紧凑,能够对电池组进行制冷或加热,有利于使电池组工作在最佳温度范围内等优点。
本发明公开了一种无人机低温电源系统及控制方法,包括动力系统与控制系统,动力系统包括主动力电池系统和备用预热电池系统,控制系统包括控制器、电池状态监控模块、充放电控制模块、热管理模块和通讯模块。本发明解决了以电池为动力来源的无人机电池低温性能衰退问题,利用备用电源系统进行低温预热从而恢复主动力电池系统性能;电池状态监控模块通过采集无人机运行过程中的主动力电池组和低温预热电池组各单体电压、电流以及温度信息,同时监控无人机主动力电池系统低温剩余电量(SOC),当电池表面温度低于0℃时,低温备用电源开始工作,驱动加热系统为主动力电池组加热,提升电池性能;本发明适用于低温寒冷地区工作的电动无人机系统。
本发明公开了一种集成式热管理套件,包括有箱体和箱盖,箱体内分别设置有水箱、水泵、温度控制器、继电器和加热 制冷模块,水箱的出水口依次连接加热 制冷模块和水泵,温度控制器通过继电器分别与水泵和加热 制冷模块电连接。本发明可以有效的改善动力锂电池包的温度控制难、制冷效率低、制冷效果不均匀等问题;可以实现同一个热管理套件,既能对动力电池加热又能对动力电池制冷;为一体式结构,能够极大简化系统与整车集成的布置难度。
本实用新型涉及基于热泵技术的电动汽车及其热管理系统,综合有车内环境热管理、动力电池热管理,以及驱动电机热耗的回收热管理,使夏季高温时车内环境、驱动电机及动力电池的冷却效果更好,冬季相比较传统电加热能量消耗少,提高了电动汽车冬季续航里程。且本实用新型需要的零部件较少,系统内各部件的连接关系简单,对控制器的控制要求较低、控制效率高,并且,在不具备控制器控制系统的情况下更适合手动控制。
本发明涉及一种精细化液流形式电池冷却方法,包括以下步骤:在确定电动汽车处于放电状态时,实时获取所述电动汽车中动力电池单体电芯状态并实时监测整包放电情况;确定冷却启动初始阈值,并根据整包及其电芯实时状态修整冷却阈值;在达到阈值后,启动冷却系统为所述动力电池进行定温差范围冷却处理。本发明通过对冷却阈值的修整提高了热控行为的响应性、应对型;定温差范围冷却方式,改善了电动汽车电池冷却过程中,电芯间温度不一致的现象;并进一步强化热管理节能性并增加续航。
本实用新型提供一种车辆及其热循环系统,热循环系统包括水泵,加热装置和至少一个散热装置,水泵、加热装置和散热装置通过管道连接成回路;散热装置为除霜器、散热器或取暖器;还包括膨胀水箱,膨胀水箱通过补水管道连接所述水泵的进水口或进水管道,并通过水泵排气管道连接所述水泵的出水口或出水管道。本实用新型所提供的技术方案,将水泵的出水口连接到膨胀水箱上,随着系统中冷却液温度的不断升高,将膨胀水箱中的冷却液和气体加热,使冷却液与气体体积膨胀并产生压力,增加水泵进水口位置的压力,确保水泵进水口位置压力高于大气压,避免出现水泵进水口管路吸瘪而影响管道流量的问题。